
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2016

Lecture 8:

Parallel Programming
Case Studies

1

 CMU 15-418/618, Fall 2016

15-418/618 course road map
Modern multi-core chip architectures: multi-core + SIMD execution + HW multi-threading

Ways to think about parallelism and communication

At the hardware level -- machine organizations and implementation
At the abstraction level -- programming models: shared memory, message passing, data parallelism

How to write and optimize parallel programs

Case studies and example techniques

Evaluating system performance

Shared address space hardware implementation details (memory coherence and consistency)

. .
 .

Exam I

Today
. .

 .

2

 CMU 15-418/618, Fall 2016

Today: case studies!
▪ Several parallel application examples

- Ocean simulation
- Galaxy simulation (Barnes-Hut algorithm)
- Parallel scan
- Data-parallel segmented scan (Bonus material!)
- Ray tracing (Bonus material!)

▪ Will be describing key aspects of the implementations
- Focus on: optimization techniques, analysis of workload

characteristics

3

 CMU 15-418/618, Fall 2016

Assumption: shared address space
▪ For the purposes of today’s lecture I encourage you to think

about the example applications in the context of a large NUMA
shared address space machine.
(single address space, but each processor can access a local region of the address
space more quickly)

▪ But issues we discuss certainly also arise in a distributed address
space setting.

4

 CMU 15-418/618, Fall 2016

Simulation of Ocean Currents
(grid-based solver)

Example taken from: Culler, Singh, and Gupta 5

 CMU 15-418/618, Fall 2016

Simulating of ocean currents

▪ Discretize 3D ocean volume into slices represented as 2D grids

▪ Discretize time evolution of ocean: ∆t

▪ High accuracy simulation requires small ∆t and high resolution grids

Figure credit: Culler, Singh, and Gupta 6

 CMU 15-418/618, Fall 2016

Where are the dependencies?

Parallelism within a grid (data-parallelism) and across operations on the different grids.
The implementation only leverages data-parallelism (for simplicity)

Boxes correspond to
computations on grids

Lines express dependencies
between computations on grids

The “grid solver” example
corresponds to these parts
of the application

Dependencies in one time step of ocean simulation

Figure credit: Culler, Singh, and Gupta 7

 CMU 15-418/618, Fall 2016

Recall shared-memory implementation discussed in previous classes:

▪ Decomposition:
- Spatial partitioning of grid: each processor receives 2D tile of grid

▪ Assignment
- Static assignment of tiles to processors

▪ Synchronization

Ocean implementation details

- Barriers (separate each pass over grid is a
different phase of computation)

- Locks for mutual exclusion when updating
shared variables (atomic update of ‘diff ’)

8

 CMU 15-418/618, Fall 2016

Another question to ask: what are the critical
working sets?
1. Local neighborhood for cell

2. Three rows of a processor’s local partition of grid

3. Processor’s local partition of grid

1. 2. 3.

9

 CMU 15-418/618, Fall 2016

Recall: two layouts of 2D grid in address space

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

2D, row-major array layout 4D array layout (block-major)

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

(Blue lines indicate consecutive memory addresses)

10

 CMU 15-418/618, Fall 2016

Ocean: execution time breakdown

Thread Thread
0 31 0 31

Observations:
- Static assignment is sufficient (approximately equal busy time per thread)

- 4D blocking of grid reduces time spent on communication
(reflected on graph as data wait time)

- Synchronization cost is largely due to waiting at barriers

4D Blocked layout2D Blocked layout

Execution on 32-processor SGI Origin 2000 (1026 x 1026 grids)

Figure credit: Culler, Singh, and Gupta 11

 CMU 15-418/618, Fall 2016

Galaxy Evolution using Barnes Hut

Example taken from: Culler, Singh, and Gupta, Chapter 3
Image credit: http://www.lsw.uni-heidelberg.de/users/mcamenzi/images/Universe_Box.gif

12

 CMU 15-418/618, Fall 2016

Galaxy evolution

▪ Represent galaxy as a collection of N particles (think: particle = star)

▪ Compute forces on each particle due to gravity
- Naive algorithm is O(N2) — all particles interact with all others (gravity has infinite extent)
- Magnitude of gravitational force falls off with distance (so algorithms approximate forces from

far away stars to gain performance)
- Result is an O(NlgN) algorithm for computing gravitational forces between all stars

Barnes-Hut algorithm

(treat as single mass)

(treat as single mass)

13

 CMU 15-418/618, Fall 2016

Barnes-Hut tree

Spatial Domain Quad-Tree Representation of Bodies

▪ Leaf nodes are star particles
▪ Interior nodes store center of mass + aggregate mass of all child bodies
▪ To compute forces on each body, traverse tree... accumulating forces from all other bodies

- Compute forces using aggregate interior node if L/D < ϴ, else descend to children
▪ Expected number of nodes touched ~ lg N / ϴ2

L
D

14

 CMU 15-418/618, Fall 2016

Barnes-Hut application structure

Challenges:
- Amount of work per body is non-uniform, communication pattern is non-

uniform (depends on the local density of bodies)
- The bodies move: so costs and communication patterns change over time
- Irregular, fine-grained computation

▪ But, there is a lot of locality in the computation (bodies that are near in space
require similar data to compute forces — it seems smart to co-locate these
computations!)

for	each	time	step	in	simulation:	
			build	tree	structure	
			compute	(aggregate	mass,	center-of-mass)	for	interior	nodes	
			for	each	particle:	
						traverse	tree	to	accumulate	gravitational	forces	
						update	particle	position	based	on	gravitational	forces

15

 CMU 15-418/618, Fall 2016

Work assignment
▪ Challenge:

- Equal number of bodies per processor != equal work per processor
- Want equal work per processor AND assignment should preserve locality

▪ Observation: spatial distribution of bodies evolves slowly

▪ Use semi-static assignment
- Each time step, for each body, record number of interactions with other

bodies (the application profiles itself)
- Cheap to compute. Just increment local per-body counters
- Use values to periodically recompute assignment

16

 CMU 15-418/618, Fall 2016

Assignment using cost zones
▪ Leverage locality inherent in tree

▪ Compute total work estimate W for all bodies
(computed by summing per-body costs)

▪ Each processor is assigned W/P of the total work
(P = num processors)

▪ Each processor performs depth-first (post-order)
traversal of tree (accumulates work seen so far)

▪ Processor Pi responsible for processing bodies
corresponding to work: iW/P to (i+1)W/P

▪ Each processor can independently compute its
assignment of bodies. (The only synchronization
required is the sum reduction to compute total
amount of work = W)

Figure credit: Culler, Singh, and Gupta 17

 CMU 15-418/618, Fall 2016

Barnes-Hut: working sets

Spatial Domain Quad-Tree Representation

▪ Working set 1: data needed to compute forces between body-body (or body-node) pairs
▪ Working set 2: data encountered in an entire tree traversal

- Expected number of nodes touched for one body: ~ lg N / ϴ2
- Computation has high locality: consecutively processed bodies are nearby, so processing

touches almost exactly the same nodes!

L
D

18

 CMU 15-418/618, Fall 2016

Barnes-hut: data distribution
▪ Cost zones technique computes a good work assignment.

What about data distribution?

▪ Difficult to distribute data
- Work assignment changes with time: would have to

dynamically redistribute all simulation data
- Data accessed at fine granularity (single tree node)

▪ Luckily: high temporal locality
- Bodies assigned to same processor are nearby in

space, so tree nodes accessed during force
computations are very similar.

- Data for traversal already in cache (Barnes-Hut
benefits from large caches, smaller cache line size)

▪ Result: Unlike OCEAN, data distribution in Barnes-Hut
does not significantly impact performance
- Implementation uses static distribution (interleave

particles throughout the machine)

Figure credit: Culler, Singh, and Gupta 19

 CMU 15-418/618, Fall 2016

Barnes-hut: execution time

Thread Thread0 31 0 31

Static assignment
(randomized)

Cost-zones assignment

Execution on 32-processor SGI Origin 2000 (512K bodies)

▪ Load balance is good even with static assignment because of random assignment
- On average, each processor does approximately the same amount of work

▪ But random assignment yields poor locality
- Significant amount of inherent communication
- Significant amount of artifactual communication (fine-grained accesses to tree nodes)

▪ Common tension: work balance vs. locality (cost-zones get us both!)
(similar to work balance vs. synchronization trade-offs in “work distribution” lecture)

Figure credit: Culler, Singh, and Gupta 20

 CMU 15-418/618, Fall 2016

Summary
▪ Today so far: two examples of parallel program optimization

▪ Key issues when discussing the applications
- How to balance the work?
- How to exploit locality inherent in the problem?
- What synchronization is necessary?

21

 CMU 15-418/618, Fall 2016

Parallel Scan

22

 CMU 15-418/618, Fall 2016

Data-parallel scan
let A	=	[a0,a1,a2,a3,...,an-1]
let ⊕ be an associative binary operator with identity element I	

scan_inclusive(⊕,	A)	=	[a0,	a0⊕a1,	a0⊕a1⊕a2,	...	
scan_exclusive(⊕,	A)	=	[I,	a0,	a0⊕a1,	...	

If operator is +, then scan_inclusive(+,A) is a prefix sum
prefix_sum(A)	=	[a0,	a0+a1,	a0+a1+a2,	...

23

 CMU 15-418/618, Fall 2016

Data-parallel inclusive scan

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a0-1 a1-2 a2-3 a3-4 a4-5 a5-6 a6-7 a7-8 a8-9 a9-10 a10-11a11-12a12-13 a13-14 a14-15

a0-1 a0-3 a2-5 a4-7 a6-9 a8-11 a10-13 a12-15a0-2 a1-4 a3-6 a5-8 a7-10 a9-12 a11-14a0

a0-1 a0-3 a0-5 a0-7 a2-9 a4-11 a6-13 a8-15a0 a0-2 a0-4 a0-6 a1-8 a3-10 a5-12 a7-14

a0-1 a0-3 a0-5 a0-7 a0-9 a0-11 a0-13 a0-15a0 a0-2 a0-4 a0-6 a0-8 a0-10 a0-12 a0-14

...

* not showing all dependencies in last step

(Subtract original vector to get exclusive scan result: not shown)

Work: O(N lg N) Inefficient compared to sequential algorithm!
Span: O(lg N)

24

 CMU 15-418/618, Fall 2016

Work-efficient parallel exclusive scan (O(N) work)
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a0-1 a2 a2-3 a4 a4-5 a6 a6-7 a8 a8-9 a10 a10-11 a12 a12-13 a14 a14-15

a0 a0-1 a2 a0-3 a4 a4-5 a6 a4-7 a8 a8-9 a10 a8-11 a12 a12-13 a14 a12-15

a0 a0-1 a2 a0-3 a4 a4-5 a6 a0-7 a8 a8-9 a10 a8-11 a12 a12-13 a14 a8-15

a0 a0-1 a2 a0-3 a4 a4-5 a6 a0-7 a8 a8-9 a10 a8-11 a12 a12-13 a14 0

a0 a0-1 a2 a0-3 a4 a4-5 a6 0 a8 a8-9 a10 a8-11 a12 a12-13 a14 a0-7

a0 a0-1 a2 0 a4 a4-5 a6 a0-3 a8 a8-9 a10 a0-7 a12 a12-13 a14 a0-11

a0 0 a2 a0-1 a4 a0-3 a6 a0-5 a8 a0-7 a10 a0-9 a12 a0-11 a14 a0-13

a00 a0-1 a0-2 a0-3 a0-4 a0-5 a0-6 a0-7 a0-8 a0-9 a0-10 a0-11 a0-12 a0-13 a0-14

25

 CMU 15-418/618, Fall 2016

Work efficient exclusive scan algorithm

for	d=0	to	(log2n	-	1)	do	
			forall	k=0	to	n-1	by	2d+1	do	
					a[k	+	2d+1	-	1]	=	a[k	+	2d	-	1]	+	a[k	+	2d+1	-	1]

x[n-1]	=	0	
for	d=(log2n	-	1)	down	to	0	do	
			forall	k=0	to	n-1	by	2d+1	do	
					tmp	=	a[k	+	2d	-	1]	
					a[k	+	2d	-	1]	=	a[k	+	2d+1	-	1]	
					a[k	+	2d+1	-	1]	=	tmp	+	a[k	+	2d+1	-	1]

Down-sweep:

Up-sweep:

Work: O(N) (but what is the constant?)
Span: O(lg N) (but what is the constant?)
Locality: ??

(with ⊕ = “+”)

26

 CMU 15-418/618, Fall 2016

Now consider scan implementation on just two cores
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a0-1 a2 a2-3 a4 a4-5 a6 a6-7 a8 a8-9 a10 a10-11 a12 a12-13 a14 a14-15

a0 a0-1 a2 a0-3 a4 a4-5 a6 a4-7 a8 a8-9 a10 a8-11 a12 a12-13 a14 a12-15

a0 a0-1 a2 a0-3 a4 a4-5 a6 a0-7 a8 a8-9 a10 a8-11 a12 a12-13 a14 a8-15

a0 a0-1 a2 a0-3 a4 a4-5 a6 a0-7 a8 a8-9 a10 a8-11 a12 a12-13 a14 0

a0 a0-1 a2 a0-3 a4 a4-5 a6 0 a8 a8-9 a10 a8-11 a12 a12-13 a14 a0-7

a0 a0-1 a2 0 a4 a4-5 a6 a0-3 a8 a8-9 a10 a0-7 a12 a12-13 a14 a0-11

a0 0 a2 a0-1 a4 a0-3 a6 a0-5 a8 a0-7 a10 a0-9 a12 a0-11 a14 a0-13

a00 a0-1 a0-2 a0-3 a0-4 a0-5 a0-6 a0-7 a0-8 a0-9 a0-10 a0-11 a0-12 a0-13 a0-14

P1 P2 27

 CMU 15-418/618, Fall 2016

Exclusive scan: two processor implementation
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

Sequential scan on elements [0-7] Sequential scan on elements [8-15]

Add base to elements a8 thru a8-11 Add base to elements a8-12 thru a8-15

P1 P2

Work: O(N) (but constant is now only 1.5)
Data-access:
- Very high spatial locality (contiguous memory access)
- P1’s access to a8 through a8-11 may be more costly on large NUMA system, but on small-scale system

access likely same cost as from P2

Let base = a0-7

28

 CMU 15-418/618, Fall 2016

Exclusive scan: SIMD implementation (in CUDA)
Example: perform exclusive scan on 32-element array: SPMD program, assume 32-wide SIMD execution
 When scan_warp is run by a group of 32 CUDA threads, each thread returns the

 exclusive scan result for element idx
(also: upon completion ptr[] stores inclusive scan result)

__device__	int	scan_warp(volatile	int	*ptr,	const	unsigned	int	idx)	
{	
			const	unsigned	int	lane	=	idx	&	31;	//	index	of	thread	in	warp	(0..31)	

			if	(lane	>=	1)		ptr[idx]	=	ptr[idx	-	1]		+		ptr[idx];	
			if	(lane	>=	2)		ptr[idx]	=	ptr[idx	-	2]		+		ptr[idx];	
			if	(lane	>=	4)		ptr[idx]	=	ptr[idx	-	4]		+		ptr[idx];	
			if	(lane	>=	8)		ptr[idx]	=	ptr[idx	-	8]		+		ptr[idx];	
			if	(lane	>=	16)	ptr[idx]	=	ptr[idx	-	16]	+		ptr[idx);	

			return	(lane	>	0)	?	ptr[idx-1]	:	0;	
}

. . .

Work: ??

CUDA thread
index of caller

29

 CMU 15-418/618, Fall 2016

__device__	int	scan_warp(volatile	int	*ptr,	const	unsigned	int	idx)	
{	
			const	unsigned	int	lane	=	idx	&	31;	//	index	of	thread	in	warp	(0..31)	

			if	(lane	>=	1)		ptr[idx]	=	ptr[idx	-	1]		+		ptr[idx];	
			if	(lane	>=	2)		ptr[idx]	=	ptr[idx	-	2]		+		ptr[idx];	
			if	(lane	>=	4)		ptr[idx]	=	ptr[idx	-	4]		+		ptr[idx];	
			if	(lane	>=	8)		ptr[idx]	=	ptr[idx	-	8]		+		ptr[idx];	
			if	(lane	>=	16)	ptr[idx]	=	ptr[idx	-	16]	+		ptr[idx];	

			return	(lane	>	0)	?	ptr[idx-1]	:	0;	
}

Work: N lg(N)
Work-efficient formulation of scan is not beneficial in this context because it results
in low SIMD utilization. It would require more than 2x the number of instructions as
the implementation above!

Exclusive scan: SIMD implementation (in CUDA)
CUDA thread
index of caller

30

 CMU 15-418/618, Fall 2016

Building scan on larger array

length 32 SIMD scan
warp 0

length 32 SIMD scan
warp 1

length 32 SIMD scan
warp 2

length 32 SIMD scan
warp 3

Example: 128-element scan using four-warp thread block

max length 32 SIMD scan
warp 0

a0-31
a32-63 a64-95

a96-127

add base[0]
warp 1

a0-31 a0-63 a0-95 a0-127

add base[1]
warp 2

add base[2]
warp 3

base:

31

 CMU 15-418/618, Fall 2016

Multi-threaded, SIMD implementation
Example: cooperating threads in a CUDA thread block perform scan
We provided similar code in assignment 2.
Code assumes length of array given by ptr is same as number of threads per block.

__device__	void	scan_block(volatile	int	*ptr,	const	unsigned	int	idx)	
{	
			const	unsigned	int	lane	=	idx	&	31;					//	index	of	thread	in	warp	(0..31)	
			const	unsigned	int	warp_id	=	idx	>>	5;		//	warp	index	in	block	

			int	val	=	scan_warp(ptr,	idx);														//	Step	1.	per-warp	partial	scan		
																																															//	(Performed	by	all	threads	in	block,		
																																															//	with	threads	in	same	warp	communicating		
																																															//	through	shared	memory	buffer	‘ptr’)		

			if	(lane	==	31)		ptr[warp_id]	=	ptr[idx];			//	Step	2.	thread	31	in	each	warp	copies	
			__syncthreads();																												//	partial-scan	bases	in	per-block	
																																															//	shared	mem	

			if	(warp_id	==	0)	scan_warp(ptr,	idx);						//	Step	3.	scan	to	accumulate	bases	
			__syncthreads();																												//	(only	performed	by	warp	0)	

			if	(warp_id	>	0)																												//	Step	4.	apply	bases	to	all	elements	
							val	=	val	+	ptr[warp_id-1];													//	(performed	by	all	threads	in	block)	
			__syncthreads();	

			ptr[idx]	=	val;	
}

CUDA thread
index of caller

32

 CMU 15-418/618, Fall 2016

Building a larger scan

SIMD scan
warp 0

Example: one million element scan (1024 elements per block)

Block 0 Scan

add base[0]
warp 1

...SIMD scan
warp 0

SIMD scan
warp N-1

SIMD scan
warp 0

add base[0]
warp N-1

...

Block 1 Scan Block N-1 Scan

...

Block 0 scan

Block 0 Add Block 1 Add ... Block N-1 Add

Exceeding 1 million elements requires partitioning phase two into multiple blocks

Kernel
Launch 1

Kernel
Launch 2

Kernel
Launch 3

33

 CMU 15-418/618, Fall 2016

Scan implementation
▪ Parallelism

- Scan algorithm features O(N) parallel work

- But efficient implementations only leverage as much parallelism as required to
make good utilization of the machine
- Goal is to reduce work and reduce communication/synchronization

▪ Locality
- Multi-level implementation to match memory hierarchy

(CUDA example: per-block implementation carried out in local memory)

▪ Heterogeneity: different strategy at different machine levels
- CUDA example: Different algorithm for intra-warp scan than inter-thread scan

- Low core count CPU example: based largely on sequential scan

34

 CMU 15-418/618, Fall 2016

Parallel Segmented Scan

35

 CMU 15-418/618, Fall 2016

Segmented scan
▪ Common problem: operating on sequence of sequences

▪ Examples:
- For each vertex in a graph:

- For each edge incoming to vertex:

- For each particle in simulation

- For each particle within cutoff radius

▪ Also there’s two levels of parallelism in the problem that a
programmer might want to exploit

▪ But its irregular: the size of edge lists, particle neighbor lists, etc,
may be very different from vertex to vertex (or particle to particle)

36

 CMU 15-418/618, Fall 2016

Segmented scan
▪ Generalization of scan

▪ Simultaneously perform scans on arbitrary contiguous partitions
of input collection

let	A		=	[[1,2],[6],[1,2,3,4]]	
let	⊕ =	+
segmented_scan_exclusive(⊕, A)	=	[[0,1],	[0],	[0,1,3,6]]

We’ll assume a simple “head-flag” representation:
A	=	[[1,2,3],[4,5,6,7,8]]	
flag:	0	0	0	1	0	0	0	0	
data:	1	2	3	4	5	6	7	8

37

 CMU 15-418/618, Fall 2016

Work-efficient segmented scan

for	d=0	to	(log2n	-	1)	do:	
			forall	k=0	to	n-1	by	2d+1	do:	
					if	flag[k	+	2d+1	-	1]	==	0:					
								data[k	+	2d+1	-	1]	=	data[k	+	2d	-	1]	+	data[k	+	2d+1	-	1]	
					flag[k	+	2d+1	-	1]	=	flag[k	+	2d	-	1]	||	flag[k	+	2d+1	-	1]

data[n-1]	=	0	
for	d=(log2n	-	1)	down	to	0	do:	
			forall	k=0	to	n-1	by	2d+1	do:	
					tmp	=	data[k	+	2d	-	1]	
					data[k	+	2d	-	1]	=	data[k	+	2d+1	-	1]	
					if	flag_original[k	+	2d]	==	1:							#	must	maintain	copy	of	original	flags	
								data[k	+	2d+1	-	1]	=	0													#	start	of	segment	
					else	if	flag[k	+	2d	-	1]	==	1:	
								data[k	+	2d+1	-	1]	=	tmp	
					else:	

		data[k	+	2d+1	-	1]	=	tmp	+	data[k	+	2d+1	-	1]	
		flag[k	+	2d	-	1]	=	0

Down-sweep:

Up-sweep:

(with ⊕ = “+”)

38

 CMU 15-418/618, Fall 2016

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a0-1 a2 a2-3 a4 a5 a6 a6-7 a8 a8-9 a10 a10-11 a12 a12-13 a14 a14-15

a0 a0-1 a2 a0-3 a4 a5 a6 a5-7 a8 a8-9 a10 a10-11 a12 a12-13 a14 a12-15

a0 a0-1 a2 a0-3 a4 a5 a6 a5-7 a8 a8-9 a10 a10-11 a12 a12-13 a14 a10-15

a0 a0-1 a2 a0-3 a4 a5 a6 a5-7 a8 a8-9 a10 a10-11 a12 a12-13 a14 0

a0 a0-1 a2 a0-3 a4 a5 a6 0 a8 a8-9 a10 a10-11 a12 a12-13 a14 0

a0 a0-1 a2 0 a4 a5 a6 a0-3 a8 a8-9 a10 0 a12 a12-13 a14 a10-11

a0 0 a2 a0-1 a4 a0-3 a6 a5 a8 0 a10 0 a12 a10-11 a14 a10-13

a00 a0-1 a0-2 a0-3 0 a5 a5-6 0 a8 0 a10 a10-11a10-12 a10-13 a10-14

1 1

1 1

1 1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1111

1 1111

1 111

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Segmented scan

39

 CMU 15-418/618, Fall 2016

Sparse matrix multiplication example

 =

 x0
 x1
 x2

 xn-1

...

 y0
 y1
 y2

 yn-1

...

 3 0
 0

 1 0. . .

 0 0. . . 2
 0 0

 0

 4 0. . .

 6 8. . . 2
...

▪ Most values in matrix are zero
- Note: logical parallelization is across per-row dot products
- But different amounts of work per row (complicates wide SIMD execution)

▪ Example sparse storage format: compressed sparse row
values = [[3,1], [2], [4], ..., [2,6,8]]

cols = [[0,2], [1], [2],,]

row_starts = [0, 2, 3, 4, ...]

40

 CMU 15-418/618, Fall 2016

Sparse matrix multiplication with scan

1. Map over all non-zero values: products[i] = values[i] * x[cols[i]]

- products = [3x0, x2, 2x1, 4x2, 2x1, 6x2, 8x3]

2. Create flags vector from row_starts: flags = [1,0,1,1,0,0]

3. Inclusive segmented-scan on (multiples, flags) using addition operator

- [3x0, 3x0+x2, 2x1, 4x2, 2x1, 2x1+6x2, 2x1+6x2+8x2]

4. Take last element in each segment:

- y = [3x0+x2, 2x1, 4x2 , 2x1+6x2+8x2]

 =

 x0

 x1

 x2

 x3

 y0

 y1

 y2

 y3

 3 0
 0

 1
 0 2

 0 0
 0

 4
 6 8 2

 0
 0
 0

values = [[3,1], [2], [4], [2,6,8]]

cols = [[0,2], [1], [2], [1,2,3]]

row_starts = [0, 2, 3, 4]

41

 CMU 15-418/618, Fall 2016

Scan/segmented scan summary
▪ Scan

- Parallel implementation of (intuitively sequential application)

- Theory: parallelism linear in number of elements

- Practice: exploit locality, use only as much parallelism as necessary to fill
the machine

- Great example of applying different strategies at different levels of
the machine

▪ Segmented scan
- Express computation and operate on irregular data structures (e.g., list

of lists) in a regular, data parallel way

42

 CMU 15-418/618, Fall 2016

Parallel Ray Tracing on SIMD Architectures
(since many students always ask about parallel ray tracing)

43

 CMU 15-418/618, Fall 2016

Ray tracing
Problem statement:
Given a “ray”, find closest intersection with scene geometry

Virtual
Pinhole
Camera

Virtual
Image Plane

Simplest ray tracer:
For each image pixel, shoot ray from camera through pixel into scene.
Color pixel according to first surface hit.

44

 CMU 15-418/618, Fall 2016

Accelerating ray-scene intersection
Preprocess scene to build data structure that accelerates finding “closest” geometry along ray
Idea: group objects with spatial proximity (like quad-tree in Barnes-Hut)

- Hierarchical grouping adapts to non-uniform density of scene objects

Scene objects (in 2D)

1

2
3

4

5

C E

F

D

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

B

Bounding Volume Hierarchy (BVH)
(Binary tree organizing the scene)

45

 CMU 15-418/618, Fall 2016

Parallelize across rays
▪ Simultaneously intersect multiple rays with scene

▪ Different cores trace different rays in parallel
- Trivial “embarrassingly parallel” implementation

▪ But how to leverage SIMD parallelism within a core?

▪ Today: we’ll discuss one approach: ray packets
- Code is explicitly written to trace N rays at a time, not 1 ray

46

 CMU 15-418/618, Fall 2016

Simple ray tracer (using a BVH)
//	stores	information	about	closest	hit	found	so	far	
struct	ClosestHitInfo	{	
			Primitive	primitive;	
			float	distance;	
};	

trace(Ray	ray,	BVHNode	node,	ClosestHitInfo	hitInfo)	
{	
			if	(!intersect(ray,	node.bbox)	||	(closest	point	on	box	is	farther	than	hitInfo.distance))	
						return;	

			if	(node.leaf)	{	
						for	(each	primitive	in	node)	{	
									(hit,	distance)	=	intersect(ray,	primitive);	
									if	(hit	&&	distance	<	hitInfo.distance)	{	
												hitInfo.primitive	=	primitive;	
												hitInfo.distance	=	distance;	
									}	
						}	
			}	else	{	

trace(ray,	node.leftChild,	hitInfo);	
					trace(ray,	node.rightChild,	hitInfo);	
			}	
}

47

 CMU 15-418/618, Fall 2016

Ray packet tracing
Program explicitly intersects a collection of rays against BVH at once
RayPacket	
{	
				Ray	rays[PACKET_SIZE];	
				bool	active[PACKET_SIZE];	
};	

trace(RayPacket	rays,	BVHNode	node,	ClosestHitInfo	packetHitInfo)	
{	
			if	(!ANY_ACTIVE_intersect(rays,	node.bbox)	||	
							(closest	point	on	box	(for	all	active	rays)	is	farther	than	hitInfo.distance))	
						return;	

			update	packet	active	mask	

			if	(node.leaf)	{	
						for	(each	primitive	in	node)	{	
									for	(each	ACTIVE	ray	r	in	packet)	{	
												(hit,	distance)	=	intersect(ray,	primitive);	
												if	(hit	&&	distance	<	hitInfo.distance)	{	
															hitInfo[r].primitive	=	primitive;	
															hitInfo[r].distance	=	distance;	
												}	
									}	
						}	
			}	else	{	
					trace(rays,	node.leftChild,	hitInfo);	
					trace(rays,	node.rightChild,	hitInfo);	
			}	
}

[Wald et al. 2001]

48

 CMU 15-418/618, Fall 2016

Ray packet tracing

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

Blue = active rays after node box test

r0
r1 r2 r3 r4 r5 r6

r7

Note: r6 does not pass node F box test due to closest-
so-far check, and thus does not visit F

49

 CMU 15-418/618, Fall 2016

Advantages of packets
▪ Map packet operations to wide SIMD execution

- One vector lane per ray

▪ Amortize BVH data fetch: all rays in packet visit node at same
time
- Load BVH node once for all rays in packet (not once per ray)
- Note: there is value to making packets bigger than SIMD width! (e.g., size = 64)

▪ Amortize work (packets are hierarchies over rays)
- Use interval arithmetic to conservatively test entire set of rays against node

bbox (e.g., think of a packet as a beam)
- Further arithmetic optimizations possible when all rays share origin
- Note: there is value to making packets much bigger than SIMD width!

50

 CMU 15-418/618, Fall 2016

Disadvantages of packets

B

C D

E F

1 2

3 4 5

G
6

A

Blue = active ray after node box test

▪ If any ray must visit a node, it drags all
rays in the packet along with it)

▪ Loss of efficiency: node traversal,
intersection, etc. amortized over less
than a packet’s worth of rays

▪ Not all SIMD lanes doing useful work

51

 CMU 15-418/618, Fall 2016

Ray packet tracing: incoherent rays

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

Blue = active ray after node box test

r0

r1

r3

r3

r4

r5

r6

r7

When rays are incoherent, benefit of packets can decrease
significantly. This example: packet visits all tree nodes.
(So all eight rays visit all tree nodes! No culling benefit!)

52

 CMU 15-418/618, Fall 2016

Incoherence is a property of both the rays and the scene

Random rays are “coherent” with respect to the BVH if the scene is one big triangle!

53

 CMU 15-418/618, Fall 2016

Camera rays become “incoherent” with respect to lower nodes in the BVH if
a scene is overly detailed

(Side note: this suggests the importance of choosing the right geometric level of detail)

Incoherence is a property of both the rays and the scene

54

 CMU 15-418/618, Fall 2016

Improving packet tracing with ray reordering

16-ray packet: 7 of 16 rays active

Reorder rays
Recompute intervals/bounds for active rays

Continue tracing with 8-ray packet:
7 of 8 rays active

Example: consider 8-wide SIMD processor and 16-ray packets
(2 SIMD instructions required to perform each operation on all rays in packet)

Idea: when packet utilization drops below threshold, resort rays and
continue with smaller packet

- Increases SIMD utilization

- Amortization benefits of smaller packets, but not large packets

[Boulos et al. 2008]

55

 CMU 15-418/618, Fall 2016

Giving up on packets
▪ Even with reordering, ray coherence during BVH traversal will

diminish
- Diffuse bounces result in essentially random ray distribution
- High-resolution geometry encourages incoherence near leaves of tree

▪ In these situations there is little benefit to packets (can even
decrease performance compared to single ray code)

56

 CMU 15-418/618, Fall 2016

Packet tracing best practices
▪ Use large packets for eye/reflection/point light shadow rays

or higher levels of BVH
- Ray coherence always high at the top of the tree

▪ Switch to single ray (intra-ray SIMD) when packet utilization
drops below threshold
- For wide SIMD machine, a branching-factor-4 BVH works well for both packet

traversal and single ray traversal

▪ Can use packet reordering to postpone time of switch
- Reordering allows packets to provide benefit deeper into tree
- Not often used in practice due to high implementation complexity

[Benthin et al. 2011]

[Wald et al. 2007]

[Boulos et al. 2008]

57

 CMU 15-418/618, Fall 2016

Summary
▪ Today we looked at several different parallel programs

▪ Key questions:
- What are the dependencies?

- What synchronization is necessary?

- How to balance the work?

- How to exploit locality inherent in the problem?

▪ Trends
- Only need enough parallelism to keep all processing elements busy (e.g., data-

parallel scan vs. simple multi-core scan)

- Different parallelization strategies may be applicable under different workloads
(packets vs. no packets) or different locations in the machine (different
implementations of scan internal and external to warp)

58

 CMU 15-418/618, Fall 2016

Brute force nearest neighbor search

59

 CMU 15-418/618, Fall 2016

Task: find most similar images to query

Query image Similar images from database

* Trajectory shown on image is movement of camera, not part of image

Evaluate features Compare to DB

60

 CMU 15-418/618, Fall 2016

Find most similar images to a query
Brute force computation:

#define	NUM_DB_IMAGES	50000	
#define	FEATURE_LEN			9216	

float	compute_distances(float*	a,	float*	b)	{	
				float	result	=	0.f;	
				for	(int	i=0;	i<FEATURE_LEN;	i++)	
	 			result	+=	a[i]	*	b[i];	
				return	result;	
}	

float	features[NUM_DB_IMAGES][FEATURE_LEN];			//	~1.7	GB	

forall	queries	i:	
			forall	images	j	in	database:	
							results[i][j]	=	compute_distance(features[i],	features[j]);

61

 CMU 15-418/618, Fall 2016

Batching queries
Increase arithmetic intensity: amortize load of DB data across
eight queries

#define	NUM_DB_IMAGES	50000	
#define	FEATURE_LEN			9216	

float	compute_distances_batched(float*	results,	float*	a,	float*	b)	{	
				for	(int	ii=0;	ii<8;	ii++)	
							results[i+ii]	=	0.0			
				for	(int	i=0;	i<FEATURE_LEN;	i++)	
							for	(int	ii=0;	ii<8;	ii++)	
							 		results[ii]	+=	a[(ii*FEATURE_LEN)+i]	*	b[i];	
}	

float	features[NUM_DB_IMAGES][FEATURE_LEN];			//	~1.7	GB	

forall	queries	i	(by	8):	
			forall	images	j	in	database:	
							for	(int	ii=0;	ii<8;	ii++)	
									compute_distance_batched(results[i],	features[i+ii],	features[j]);	

62

 CMU 15-418/618, Fall 2016

Performance

Num Threads (32 core machine + hyper-threading)

0"

8"

16"

24"

32"

0" 16" 32" 48" 64"

Not"Batched"

Batched"(8x)"

Speedup

Num Threads (32 core machine + hyper-threading)

0"

25"

50"

75"

100"

125"

150"

175"

200"

225"

0" 16" 32" 48" 64"

Not"Batched"

Batched"(8x)"

Throughput

Qu
er

ie
s/s

ec
Re

la
tiv

e t
o 1

 th
re

ad

Num Threads (32 core machine + hyper-threading)

63

