
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2017

Lecture 6:

Performance Optimization Part II:
Locality, Communication, and Contention

1

 CMU 15-418/618, Fall 2017

Today: more parallel program optimization

▪ Last lecture: strategies for assigning work to workers
(threads, processors, etc.)
- Goal: achieving good workload balance while also minimizing overhead

- Discussed tradeoffs between static and dynamic work assignment
- Tip: keep it simple (implement, analyze, then tune/optimize if required)

▪ Today: strategies for minimizing communication costs

2

 CMU 15-418/618, Fall 2017

Message-passing solver review
(since it makes communication explicit)

3

 CMU 15-418/618, Fall 2017

Message passing model: each thread operates in its
own address space

In this figure: four threads

The grid data is partitioned into
four allocations, each residing in
one of the four unique thread
address spaces

(four per-thread private arrays)

Thread 1
Address

Space

Thread 2
Address

Space

Thread 3
Address

Space

Thread 4
Address

Space

4

 CMU 15-418/618, Fall 2017

Data replication is now required to correctly
execute the program

Thread 1
Address

Space

Thread 3
Address

Space

Thread 4
Address

Space

“Ghost cells” are grid cells replicated from a remote
address space. It’s common to say that information
in ghost cells is “owned” by other threads.

Send row

Send row

Example:
After red cell processing is complete, thread 1 and
thread 3 send row of data to thread 2
(thread 2 requires up-to-date red cell information to
update black cells in the next phase)

float*	local_data	=	allocate(N+2,rows_per_thread+2);	

int	tid	=	get_thread_id();	
int	bytes	=	sizeof(float)	*	(N+2);	

//	receive	ghost	row	cells	(white	dots)	
recv(&local_data[0,0],	bytes,	tid-1);	
recv(&local_data[rows_per_thread+1,0],	bytes,	tid+1);	

//	Thread	2	now	has	data	necessary	to	perform	
//	future	computation

Thread 2
Address

Space

Thread 2 logic:

5

 CMU 15-418/618, Fall 2017

int	N;	
int	tid	=	get_thread_id();	
int	rows_per_thread	=	N	/	get_num_threads();	

float*	localA	=	allocate(rows_per_thread+2,	N+2);	

//	assume	localA	is	initialized	with	starting	values	
//	assume	MSG_ID_ROW,	MSG_ID_DONE,	MSG_ID_DIFF	are	constants	used	as	msg	ids	

//////////////////////////////////////	

void	solve()	{	
		bool	done	=	false;	
		while	(!done)	{	
				
				float	my_diff	=	0.0f;	

				if	(tid	!=	0)	
							send(&localA[1,0],	sizeof(float)*(N+2),	tid-1,	MSG_ID_ROW);	
				if	(tid	!=	get_num_threads()-1)	
							send(&localA[rows_per_thread,0],	sizeof(float)*(N+2),	tid+1,	MSG_ID_ROW);	
						
				if	(tid	!=	0)	
							recv(&localA[0,0],	sizeof(float)*(N+2),	tid-1,	MSG_ID_ROW);	
				if	(tid	!=	get_num_threads()-1)	
							recv(&localA[rows_per_thread+1,0],	sizeof(float)*(N+2),	tid+1,	MSG_ID_ROW);	

				for	(int	i=1;	i<rows_per_thread+1;	i++)	{	
							for	(int	j=1;	j<n+1;	j++)	{	
									float	prev	=	localA[i,j];	
									localA[i,j]	=	0.2	*	(localA[i-1,j]	+	localA[i,j]	+	localA[i+1,j]	+		
																														localA[i,j-1]	+	localA[i,j+1]);	
							my_diff	+=	fabs(localA[i,j]	-	prev);	
					}	
		}	

		if	(tid	!=	0)	{	
					send(&mydiff,	sizeof(float),	0,	MSG_ID_DIFF);	
					recv(&done,	sizeof(bool),	0,	MSG_ID_DONE);	
		}	else	{	
					float	remote_diff;	
					for	(int	i=1;	i<get_num_threads()-1;	i++)	{	
								recv(&remote_diff,	sizeof(float),	i,	MSG_ID_DIFF);	
								my_diff	+=	remote_diff;	
					}	
					if	(my_diff/(N*N)	<	TOLERANCE)	
							done	=	true;	
					for	(int	i=1;	i<get_num_threads()-1;	i++)	
							send(&done,	sizeof(bool),	i,	MSD_ID_DONE);	
		}		

		}	
}

Message passing solver

Send and receive ghost rows to “neighbor threads”

Perform computation
 (just like in shared address space version of solver)

All threads send local my_diff to thread 0

Thread 0 computes global diff, evaluates
termination predicate and sends result back to all

other threads

Similar structure to shared address space
solver, but now communication is explicit in
message sends and receives

Example pseudocode from: Culler, Singh, and Gupta 6

 CMU 15-418/618, Fall 2017

Synchronous (blocking) send and receive
▪ send(): call returns when sender receives acknowledgement that message

data resides in address space of receiver

▪ recv(): call returns when data from received message is copied into address
space of receiver and acknowledgement sent back to sender

Call SEND(foo)
Copy data from buffer ‘foo’ in sender’s address

space into network buffer

Call RECV(bar)

Receive messageSend message
Copy data into buffer ‘bar’ in receiver’s

address space
Send ack
RECV() returns

Receive ack
SEND() returns

Sender: Receiver:

7

 CMU 15-418/618, Fall 2017

As implemented on the prior slide, there is a
big problem with our message passing solver

if it uses synchronous send/recv!

Why?

How can we fix it?
(while still using synchronous send/recv)

8

 CMU 15-418/618, Fall 2017

int	N;	
int	tid	=	get_thread_id();	
int	rows_per_thread	=	N	/	get_num_threads();	

float*	localA	=	allocate(rows_per_thread+2,	N+2);	

//	assume	localA	is	initialized	with	starting	values	
//	assume	MSG_ID_ROW,	MSG_ID_DONE,	MSG_ID_DIFF	are	constants	used	as	msg	ids	

//////////////////////////////////////	

void	solve()	{	
		bool	done	=	false;	
		while	(!done)	{	
				
				float	my_diff	=	0.0f;	

				if	(tid	%	2	==	0)	{	
							sendDown();	recvDown();	
							sendUp();			recvUp();	
				}	else	{	
							recvUp();			sendUp();	
							recvDown();	sendDown();	
				}	

				…	
		}	
}

Send and receive ghost rows to “neighbor threads”
Even-numbered threads send, then receive

Odd-numbered thread recv, then send

Example pseudocode from: Culler, Singh, and Gupta

Message passing solver
(fixed to avoid deadlock)

T0

T1

T2

T3

T4

T5

time

send

send

send

send

send

send

send

send

send

send

9

 CMU 15-418/618, Fall 2017

Non-blocking asynchronous send/recv
▪ send(): call returns immediately

- Buffer provided to send() cannot be modified by calling thread since message processing
occurs concurrently with thread execution

- Calling thread can perform other work while waiting for message to be sent

▪ recv(): posts intent to receive in the future, returns immediately
- Use checksend(), checkrecv() to determine actual status of send/receipt
- Calling thread can perform other work while waiting for message to be received

Call SEND(foo)

Copy data from ‘foo’ into network buffer

Call RECV(bar)

Receive messageSend message
Messaging library copies data into ‘bar’

RECV(bar) returns handle h2SEND returns handle h1

Sender: Receiver:

Call CHECKSEND(h1) // if message sent, now safe for thread to modify ‘foo’ Call CHECKRECV(h2)
// if received, now safe for thread
// to access ‘bar’

RED TEXT = executes concurrently with application thread

10

 CMU 15-418/618, Fall 2017

Let’s talk about…
Pittsburgh

11

 CMU 15-418/618, Fall 2017

Pittsburgh is now hot stuff!

12

 CMU 15-418/618, Fall 2017

And so is Bay Area rent…

13

 CMU 15-418/618, Fall 2017

418SKILLZ

Hey, let’s move to Pittsburgh!
(all the cool tech kids are doing it!)

14

 CMU 15-418/618, Fall 2017

Everyone wants to get to Pittsburgh!

Car’s velocity: 100 km/hr
Pittsburgh

San
Francisco

Distance: ~ 4,000 km

Latency of moving a person from San Francisco to Pittsburgh: 40 hours

Car’s velocity: 100 km/hr
PittsburghSan

Francisco

Cars spaced by 1 km on highway

Throughput: 100 people per hour (1 car every 1/100 of an hour)

(Latency vs. throughput review)

15

 CMU 15-418/618, Fall 2017

Improving throughput
Car’s velocity: 150 km/hr

PittsburghSan
Francisco

Cars spaced by 1 km on highway

Approach 1: drive faster!
Throughput = 150 people per hour (1 car every 1/150 of an hour)

Car’s velocity: 100 km/hr

PittsburghSan
Francisco

Approach 2: build more lanes!
Throughput: 300 people per hour (3 cars every 1/100 of an hour)

Cars spaced by 1 km on highway

16

 CMU 15-418/618, Fall 2017

Review: latency vs throughput

Latency

Bandwidth

The amount of time needed for an operation to complete.
A memory load that misses the cache has a latency of 200 cycles

A packet takes 20 ms to be sent from my computer to Google
Asking a question on Piazza gets response in 10 minutes

The rate at which operations are performed.
Memory can provide data to the processor at 25 GB/sec.

A communication link can send 10 million messages per second
The TAs answer 50 questions per day on Piazza

17

 CMU 15-418/618, Fall 2017

What if only one car can be on the highway
at a time?

Car’s velocity: 100 km/hr
PittsburghSan

Francisco

Throughput = 1 / latency

Latency of moving a person from San Francisco to Pittsburgh: 40 hours

When car on highway reaches Pittsburgh, the next car leaves San Francisco.

= 1 / 40 of a person per hour (1 car every 40 hours)

18

 CMU 15-418/618, Fall 2017

Pipelining

19

 CMU 15-418/618, Fall 2017

Example: doing your laundry

Washer
45 min

Dryer
60 min

College Student
15 min

Operation: do your laundry
1. Wash clothes
2. Dry clothes
3. Fold clothes

Latency of completing 1 load of laundry = 2 hours

20

 CMU 15-418/618, Fall 2017

Increasing laundry throughput
Goal: maximize throughput of many loads of laundry

One approach: duplicate execution resources:
use two washers, two dryers, and call a friend

Latency of completing 2 loads of laundry = 2 hours
Throughput increases by 2x: 1 load/hour

Number of resources increased by 2x: two washers, two dryers

21

 CMU 15-418/618, Fall 2017

Pipelining
Goal: maximize throughput of many loads of laundry

1 hr 2 hr 3 hr 4 hr 5 hr

Latency: 1 load takes 2 hours
Throughput: 1 load/hour
Resources: one washer, one dryer

22

 CMU 15-418/618, Fall 2017

Another example: an instruction pipeline

Clocks

Latency: 1 instruction takes 4 cycles
Throughput: 1 instruction per cycle
(Yes, care must be taken to ensure program correctness when back-to-back instructions are dependent.)

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

Intel Core i7 pipeline is variable length (it depends on the instruction) ~15-20 stages

Four-stage instruction pipeline:

IF = instruction fetch
D = instruction decode + register read
EX = execute
WB = “write back” results to registers

Break execution of each instruction down into several smaller steps
Enables higher clock frequency (only a simple, short operation is done by each part of pipeline each clock)

instr 0

instr 1

instr 2

instr 3

instr 4

instr 5

23

 CMU 15-418/618, Fall 2017

Analogy to driving to Pittsburgh example

Car’s velocity: 100 km/hr
PittsburghSan

Francisco

Cars spaced by 1 km on highway

Throughput = 100 people per hour (1 car every 1/100 of an hour)

Car’s velocity: 100 km/hr
PittsburghSan

Francisco

Cars now spaced by only 500m on highway

Throughput = 200 people per hour (1 car every 1/200 of an hour) *

* Equivalent throughput to maintaining 1 km spacing of cars and driving at 200 km/hr

Task of driving from San Francisco to Pittsburgh is broken up into smaller
subproblems that different cars can tackle in parallel

(top: subproblem = drive 1 km, bottom: subproblem = drive 500m)

24

 CMU 15-418/618, Fall 2017

A simple model of non-pipelined communication

T(n) = transfer time (overall latency of the operation)

T0 = start-up latency (e.g., time until first bit arrives at destination)

n = bytes transferred in operation

B = transfer rate (bandwidth of the link)

If processor only sends next message once previous message send completes…

“Effective bandwidth” = n / T(n)
Effective bandwidth depends on transfer size (big transfers amortize startup latency)

T0 T0 T0n/B n/B n/B
time

Example: sending a n-bit message

25

 CMU 15-418/618, Fall 2017

A more general model of communication

Send API call, copy message to network buffer

Send data over link 1 (slow link): T0 + n/Bsmall

Send data over link 2 (fast link): T0 + n/Blarge

Copy message to receiver node’s network buffer:

= Overhead (time spent on the communication by a processor)

= Occupancy (time for data to pass through slowest component of system)

= Network delay (everything else)

Total communication time = overhead + occupancy + network delay
Example: sending a n-bit message

Sender Receiver
Link 1

bandwidth = Bsmall

Link 2
bandwidth = Blarge

Example from: Culler, Singh, and Gupta 26

 CMU 15-418/618, Fall 2017

Pipelined communication

Occupancy determines communication rate!
(in steady state: msg/sec = 1/occupancy)

time

Assume network buffer can hold at most two messages (numbers indicate number of msgs in buffer after insert)

Sending emits burst of messages
(faster than 1/occupancy)

= sender blocked from sending additional
messages due to network buffer being full

Example from: Culler, Singh, and Gupta

Messages are buffered while link is busy

= Overhead (time spent on the communication by a processor)
= Occupancy (time for data to pass through slowest component of system)

= Network delay (everything else)

1

1

2

2

2

27

 CMU 15-418/618, Fall 2017

Cost

Total communication cost = communication time - overlap

Overlap: portion of communication performed concurrently with other work
“Other work” can be computation or other communication

The effect operations have on program execution time
(or some other metric, e.g.,energy consumed…)

“That function has very high cost” (cost of having to perform the instructions)
“My slow program sends most of its time waiting on memory.” (cost of waiting on memory)

“saxpy achieves low ALU utilization because it is bandwidth bound.” (cost of waiting on memory)

Total communication time = overhead + occupancy + network delay

Example 1: Asynchronous message send/recv allows communication to be overlapped with computation
Example 2: Pipelining allows multiple message sends to be overlapped

28

 CMU 15-418/618, Fall 2017

Think of a parallel system as an extended memory hierarchy
I want you to think of “communication” very generally:
- Communication between a processor and its cache
- Communication between processor and memory (e.g., memory on same machine)
- Communication between processor and a remote memory

(e.g., memory on another node in the cluster, accessed by sending a network message)

Proc

Reg

Local L1

Local L2

L3 cache

Local memory

Remote memory (1 network hop)

Remote memory (N network hops)

L2 from another core

Lower latency, higher bandwidth,
smaller capacity

Higher latency, lower bandwidth,
larger capacity

View from one processor

Accesses not satisfied in local memory
cause communication with next level

So managing locality is important at
all levels

29

 CMU 15-418/618, Fall 2017

Two reasons for communication:
inherent vs. artifactual communication

30

 CMU 15-418/618, Fall 2017

Inherent communication
Communication that must occur in a
parallel algorithm. The communication
is fundamental to the algorithm.

In our messaging passing example at
the start of class, sending ghost rows
was inherent communication

P3

P4

Send row

Send row

P1

P2

31

 CMU 15-418/618, Fall 2017

Communication-to-computation ratio

▪ If denominator is the execution time of computation, ratio gives average
bandwidth requirement of code

▪ “Arithmetic intensity” = 1 / communication-to-computation ratio
- I find arithmetic intensity a more intuitive quantity, since higher is better.
- It also sounds cooler

▪ High arithmetic intensity (low communication-to-computation ratio) is required to
efficiently utilize modern parallel processors since the ratio of compute capability
to available bandwidth is high (recall element-wise vector multiple from lecture 2)

amount of communication (e.g., bytes)

amount of computation (e.g., instructions)

32

 CMU 15-418/618, Fall 2017

Reducing inherent communication
Good assignment decisions can reduce inherent communication
(increase arithmetic intensity)

1D blocked assignment: N x N grid 1D interleaved assignment: N x N grid

elements computed (per processor) ≈ N2/P

elements communicated (per processor) ≈ 2N
 ∝ N / P elements computed

elements communicated
 = 1/2

33

 CMU 15-418/618, Fall 2017

Reducing inherent communication

P1 P2 P3

P4 P5 P6

P7 P8 P9

N2 elements

P processors

elements computed:
(per processor)

elements communicated:
(per processor)

arithmetic intensity:

2D blocked assignment: N x N grid

Asymptotically better communication scaling than 1D blocked assignment
Communication costs increase sub-linearly with P
Assignment captures 2D locality of algorithm

N
P

N 2

P

∝
N
P

34

 CMU 15-418/618, Fall 2017

Artifactual communication
▪ Inherent communication: information that fundamentally must be

moved between processors to carry out the algorithm given the
specified assignment (assumes unlimited capacity caches,
minimum granularity transfers, etc.)

▪ Artifactual communication: all other communication (artifactual
communication results from practical details of system
implementation)

35

 CMU 15-418/618, Fall 2017

Artifactual communication examples
▪ System might have a minimum granularity of transfer (result: system must

communicate more data than what is needed)

- Program loads one 4-byte float value but entire 64-byte cache line must be
transferred from memory (16x more communication than necessary)

▪ System might have rules of operation that result in unnecessary communication:

- Program stores 16 consecutive 4-byte float values, so entire 64-byte cache line is
loaded from memory, and then subsequently stored to memory (2x overhead)

▪ Poor placement of data in distributed memories (data doesn’t reside near processor
that accesses it the most)

▪ Finite replication capacity (same data communicated to processor multiple times
because cache is too small to retain it between accesses)

36

 CMU 15-418/618, Fall 2017

Review of the three (now four) Cs

▪ Cold miss

▪ Capacity miss

▪ Conflict miss

First time data touched. Unavoidable in a sequential program.

Working set is larger than cache. Can be avoided/reduced by increasing cache size.

Miss induced by cache management policy. Can be avoided/reduced
by changing cache associativity, or data access pattern in application.

▪ Communication miss (new)
Due to inherent or artifactual communication in parallel system

You are expected to know this from 15-213!

37

 CMU 15-418/618, Fall 2017

Communication: working set perspective

Increasing capacity of hierarchy level

Data
traffic

This diagram holds true at any level of the memory hierarchy in a parallel system
Question: how much capacity should an architect build for this workload?

Cold misses

Inherent Communication

Cache capacity-generated traffic
(including conflicts)

First working set

Second working set

38

 CMU 15-418/618, Fall 2017

Does the graph on the previous slide look familiar?

39

 CMU 15-418/618, Fall 2017

Techniques for reducing communication

40

 CMU 15-418/618, Fall 2017

Data access in grid solver: row-major traversal

N
Assume row-major grid layout.

Assume cache line is 4 grid elements.

Cache capacity is 24 grid elements (6 lines)

Recall grid solver application.
Blue elements show data in cache after
update to red element.

41

 CMU 15-418/618, Fall 2017

N
Assume row-major grid layout.

Assume cache line is 4 grid elements.

Cache capacity is 24 grid elements (6 lines)

Blue elements show data in cache at end
of processing first row.

Data access in grid solver: row-major traversal

42

 CMU 15-418/618, Fall 2017

Problem with row-major traversal: long
time between accesses to same data

N
Assume row-major grid layout.

Assume cache line is 4 grid elements.

Cache capacity is 24 grid elements (6 lines)

Although elements (0,2) and (1,1) had been
accessed previously, they are no longer
present in cache at start of processing row 2

(What type of miss is this?)

This program loads three lines for every
four elements.

43

 CMU 15-418/618, Fall 2017

Improving temporal locality by changing
grid traversal order

N
Assume row-major grid layout.

Assume cache line is 4 grid elements.

Cache capacity is 24 grid elements (6 lines)

“Blocked” iteration order.
(recall cache lab in 15-213)

Now three lines for every eight elements.

44

 CMU 15-418/618, Fall 2017

Improving temporal locality by fusing loops
void	add(int	n,	float*	A,	float*	B,	float*	C)	{	
				for	(int	i=0;	i<n;	i++)	
							C[i]	=	A[i]	+	B[i];					
}	

void	mul(int	n,	float*	A,	float*	B,	float*	C)	{	
				for	(int	i=0;	i<n;	i++)	
							C[i]	=	A[i]	*	B[i];					
}	

float*	A,	*B,	*C,	*D,	*E,	*tmp1,	*tmp2;	

//	assume	arrays	are	allocated	here	

//	compute	E	=	D	+	((A	+	B)	*	C)	
add(n,	A,	B,	tmp1);	
mul(n,	tmp1,	C,	tmp2);	
add(n,	tmp2,	D,	E);

void	fused(int	n,	float*	A,	float*	B,	float*	C,	float*	D,	float*	E)	{	
				for	(int	i=0;	i<n;	i++)	
							E[i]	=	D[i]	+	(A[i]	+	B[i])	*	C[i];					
}	

//	compute	E	=	D	+	(A	+	B)	*	C	
fused(n,	A,	B,	C,	D,	E);

Two loads, one store per math op
(arithmetic intensity = 1/3)

Two loads, one store per math op
(arithmetic intensity = 1/3)

Four loads, one store per 3 math ops
(arithmetic intensity = 3/5)

Overall arithmetic intensity = 1/3

Code on top is more modular (e.g, array-based math library like numarray in Python)
Code on bottom performs much better. Why?

45

 CMU 15-418/618, Fall 2017

Improve arithmetic intensity by sharing data

▪ Exploit sharing: co-locate tasks that operate on the same data
- Schedule threads working on the same data structure at the same time

on the same processor
- Reduces inherent communication

▪ Example: CUDA thread block
- Abstraction used to localize related processing in a CUDA program

- Threads in block often cooperate to perform an operation (leverage fast
access to / synchronization via CUDA shared memory)

- So GPU implementations always schedule threads from the same block
on the same GPU core

46

 CMU 15-418/618, Fall 2017

Exploiting spatial locality
▪ Granularity of communication can be important because it may

introduce artifactual communication
- Granularity of communication / data transfer
- Granularity of cache coherence (will discuss in future lecture)

47

 CMU 15-418/618, Fall 2017

Artifactual communication due to comm. granularity
2D blocked assignment of data to processors as described previously.
Assume: communication granularity is a cache line, and a cache line
contains four elements

Good spatial locality for non-local
accesses to top-bottom rows

Poor spatial locality for non-local
accesses to left-right columns

Inherently need one element from left
and right neighbor, but system must
communicate four.

Implication: artifactual communication
increases with cache line size!

= required elements assigned to other processors

Data owned by one thread

48

 CMU 15-418/618, Fall 2017

Artifactual communication due to cache line
communication granularity

P1 P2

Data partitioned in half by column. Partitions
assigned to threads running on P1 and P2

Threads access their assigned elements
(no inherent communication exists)

But data access on real machine triggers
(artifactual) communication due to the cache
line being written to by both processors *

* further detail in the upcoming cache coherence lectures

Cache line

49

 CMU 15-418/618, Fall 2017

Reducing artifactual comm: blocked data layout

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

2D, row-major array layout 4D array layout (block-major)

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

Consecutive addresses
straddle partition boundary

Consecutive addresses remain
within single partition

Note: don’t confuse blocked assignment of work to threads (true in both cases above)
with blocked data layout in the address space (only at right)

(Blue lines indicate consecutive memory addresses)

50

 CMU 15-418/618, Fall 2017

Contention

51

 CMU 15-418/618, Fall 2016

Example: two students make appointments to talk
to me about course material (at 3pm and at 4:30pm)
- Operation to perform: Professor Mowry helps a student with a question
- Execution resource: Professor Mowry
- Steps in operation:

1. Student walks from Gates Cafe to Prof. Mowry’s office (5 minutes) =
2. Student waits in line (??) =
3. Student gets question answered with insightful answer (5 minutes) =

Student 1
(appt @ 3pm)

Student 2
(appt @ 4pm)

Time

2:55pm 3pm 3:05pm

…
4:25pm 4:30pm 4:35pm

Time cost to student:
10 minutes

Time cost to student:
10 minutes

52

 CMU 15-418/618, Fall 2016

Office hours from 3-3:20pm (no appointments)

Student 1

Time

2:55pm 3pm 3:05

Student 2

Student 3

Student 4

Student 5

3:10 3:15 3:20

= Walk to Prof. Mowry’s office (5 minutes) = Wait in line = Get question answered

Time cost to student:
10 minutes

Time cost to student:
23 minutes

Problem: contention for shared resource results in longer overall operation
times (and likely higher cost to students)

53

 CMU 15-418/618, Fall 2017

Contention
▪ A resource can perform operations at a given throughput (number of

transactions per unit time)
- Memory, communication links, servers, TA’s at office hours, etc.

▪ Contention occurs when many requests to a resource are made within a
small window of time (the resource is a “hot spot”)

Tree structured communication:
reduces contention

(but higher latency under no contention)

Flat communication:
potential for high contention

(but low latency if no contention)

Example: updating a shared variable

54

 CMU 15-418/618, Fall 2017

Example: distributed work queues serve to reduce
contention (contention in access to single shared work queue)

Worker threads:
Pull data from OWN work queue
Push new work to OWN work queue
When local work queue is empty...
STEAL work from another work queue

T1 T2 T3 T4

Set of work queues
(In general, one per worker thread)

Steal!

Subproblems
(a.k.a. “tasks”, “work to do”)

55

 CMU 15-418/618, Fall 2017

Example: create grid of particles data structure
on large parallel machine (e.g, a GPU)
▪ Problem: place 1M point particles in a 16-cell uniform grid based on 2D position

- Parallel data structure manipulation problem: build a 2D array of lists

▪ GTX 980 GPU: Up to 2048 CUDA threads per SMM core, and 16 SMM cores on the GPU

1 320

5 764

9 11108

13 151412

0

1
2

4

5

3

56

 CMU 15-418/618, Fall 2017

Common use of this structure: N-body problems
▪ A common operation is to compute interactions with neighboring particles

▪ Example: given particle, find all particles within radius R
- Create grid with cells of size R
- Only need to inspect particles in surrounding grid cells

R

R

57

 CMU 15-418/618, Fall 2017

Solution 1: parallelize over cells
▪ One possible answer is to decompose work by cells: for each cell,

independently compute particles within it (eliminates contention
because no synchronization is required)
- Insufficient parallelism: only 16 parallel tasks, but need thousands of

independent tasks to efficiently utilize GPU)

- Work inefficient: performs 16 times more particle-in-cell computations than
sequential algorithm

list	cell_lists[16];						//	2D	array	of	lists	

for	each	cell	c											//	in	parallel	
			for	each	particle	p				//	sequentially	
							if	(p	is	within	c)	
										append	p	to	cell_lists[c]

58

 CMU 15-418/618, Fall 2017

Solution 2: parallelize over particles
▪ Another answer: assign one particle to each CUDA thread. Thread

computes cell containing particle, then atomically updates list.
- Massive contention: thousands of threads contending for access to update

single shared data structure

list	cell_list[16];				//	2D	array	of	lists	
lock	cell_list_lock;	

for	each	particle	p										//	in	parallel	
			c	=	compute	cell	containing	p	
			lock(cell_list_lock)	
			append	p	to	cell_list[c]	
			unlock(cell_list_lock)

59

 CMU 15-418/618, Fall 2017

Solution 3: use finer-granularity locks
▪ Alleviate contention for single global lock by using per-cell locks

- Assuming uniform distribution of particles in 2D space... ~16x less contention
than solution 2

list	cell_list[16];				//	2D	array	of	lists	
lock	cell_list_lock[16];	

for	each	particle	p										//	in	parallel	
			c	=	compute	cell	containing	p	
			lock(cell_list_lock[c])	
			append	p	to	cell_list[c]	
			unlock(cell_list_lock[c])

60

 CMU 15-418/618, Fall 2017

Solution 4: compute partial results + merge
▪ Yet another answer: generate N “partial” grids in parallel, then combine

- Example: create N thread blocks (at least as many thread blocks as SMX cores)

- All threads in thread block update same grid
- Enables faster synchronization: contention reduced by factor of N and also cost

of synchronization is lower because it is performed on block-local variables (in
CUDA shared memory)

- Requires extra work: merging the N grids at the end of the computation

- Requires extra memory footprint: Store N grids of lists, rather than 1

61

 CMU 15-418/618, Fall 2017

Solution 5: data-parallel approach 1 320

5 764

9 11108

13 151412

0

1
2

4
5

3

9 6 6 4 6 4

0 1 2 3 4 5

4 4 6 6 6 9

3 5 1 2 4 0

Step 1: compute cell containing each particle (parallel over input particles)

Step 2: sort results by cell (particle index array permuted based on sort)

Step 3: find start/end of each cell (parallel over particle_index elements)
cell	=	grid_index[index]	
if	(index	==	0)	
				cell_starts[cell]	=	index;	
else	if	(cell	!=	grid_index[index-1])	{	
				cell_starts[cell]	=	index;	
				cell_ends[grid_index[index-1]]	=	index;	
}	
if	(index	==	numParticles-1)	//	special	case	for	last	cell	
				cell_ends[cell]	=	index+1;

This solution maintains a large amount of
parallelism and removes the need for fine-
grained synchronization... at cost of a sort
and extra passes over the data (extra BW)

particle_index:

particle_index:

grid_index:

grid_index:

This code is run for each element of
particle_index array

(each innovation has a unique valid of ‘index’)

0 2 5

2 5 6

cell_starts

cell_ends

0 1 2 3 4 5 6 7 8 9 10

. . .

. . .

(not inclusive)
62

 CMU 15-418/618, Fall 2017

Reducing communication costs
▪ Reduce overhead of communication to sender/receiver

- Send fewer messages, make messages larger (amortize overhead)
- Coalesce many small messages into large ones

▪ Reduce delay
- Application writer: restructure code to exploit locality
- HW implementor: improve communication architecture

▪ Reduce contention
- Replicate contended resources (e.g., local copies, fine-grained locks)
- Stagger access to contended resources

▪ Increase communication/computation overlap
- Application writer: use asynchronous communication (e.g., async messages)
- HW implementor: pipelining, multi-threading, pre-fetching, out-of-order exec
- Requires additional concurrency in application (more concurrency than number

of execution units)
63

 CMU 15-418/618, Fall 2017

Summary: optimizing communication
▪ Inherent vs. artifactual communication

- Inherent communication is fundamental given how the problem is
decomposed and how work is assigned

- Artifactual communication depends on machine implementation details
(often as important to performance as inherent communication)

▪ Improving program performance
- Identify and exploit locality: communicate less (increase arithmetic intensity)

- Reduce overhead (fewer, large messages)

- Reduce contention

- Maximize overlap of communication and processing
(hide latency so as to not incur cost)

64

