Lecture 2:

A Modern Multi-Core Processor
(Three forms of parallelism + understanding latency and bandwidth)
Quick review

1. Why has single-instruction-stream performance topped out in recent years?

2. What prevented us from obtaining maximum speedup from the parallel programs we wrote last time?
Today

- Today we will talk computer architecture

- Four key concepts about how modern computers work
 - Two concern execution
 - Two concern access to memory

- Understanding these architecture basics will help you
 - Understand and optimize the performance of your parallel programs
 - Gain intuition about what workloads might benefit from fast parallel machines
Part 1: parallel execution
Example program

Compute $\sin(x)$ using Taylor expansion:
$\sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...$
for each element of an array of N floating-point numbers

```c
void sinx(int N, int terms, float* x, float* result)
{
    for (int i=0; i<N; i++)
    {
        float value = x[i];
        float numer = x[i] * x[i] * x[i];
        int denom = 6;  // 3!
        int sign = -1;

        for (int j=1; j<=terms; j++)
        {
            value += sign * numer / denom
            numer *= x[i] * x[i];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }

        result[i] = value;
    }
}
```
void sinx(int N, int terms, float* x, float* result)
{
 for (int i=0; i<N; i++)
 {
 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;
 }

 result[i] = value;
 }
}
Execute program

```
x[i]
```

```
ld   r0, addr[r1]
mul  r1, r0, r0
mul  r1, r1, r0
...
...
...
...
st   addr[r2], r0
result[i]
```
Execute program

My very simple processor: executes one instruction per clock

Fetch/Decode

ALU (Execute)

Execution Context

x[i]

ld r0, addr[r1]
mul r1, r0, r0
mul r1, r1, r0
...
...
...
...
...
...
...
st addr[r2], r0

result[i]
Execute program

My very simple processor: executes one instruction per clock

```
ld    r0, addr[r1]
mul   r1, r0, r0
mul   r1, r1, r0
...  
...  
...  
...  
...  
st    addr[r2], r0
```
Execute program

My very simple processor: executes one instruction per clock

Fetch/Decode

ALU (Execute)

Execution Context

ld r0, addr[r1]
mul r1, r0, r0
mul r1, r1, r0
...
...
...
...
...
...
st addr[r2], r0

result[i]

x[i]
Superscalar processor

Recall from last class: instruction level parallelism (ILP)
Decode and execute two instructions per clock (if possible)

Note: No ILP exists in this region of the program
Aside: Pentium 4

CPU: pre multi-core era

Majority of chip transistors perform operations that help a single instruction stream run fast.

- Fetch/Decode
- ALU (Execute)
- Execution Context
- Data cache (a big one)
- Out-of-order control logic
- Fancy branch predictor
- Memory pre-fetcher

More transistors = larger cache, smarter out-of-order logic, smarter branch predictor, etc.
(Also: more transistors → smaller transistors → higher clock frequencies)
Idea #1:

Use increasing transistor count to add more cores to the processor

Rather than use transistors to increase sophistication of processor logic that accelerates a single instruction stream (e.g., out-of-order and speculative operations)
Two cores: compute two elements in parallel

Simpler cores: each core is slower than original “fat” core (e.g., 25% slower)
But there are now two: \(2 \times 0.75 = 1.5 \) (speedup!)
But our program expresses no parallelism

```c
void sinx(int N, int terms, float* x, float* result)
{
    for (int i=0; i<N; i++)
    {
        float value = x[i];
        float numer = x[i] * x[i] * x[i];
        int denom = 6; // 3!
        int sign = -1;

        for (int j=1; j<=terms; j++)
        {
            value += sign * numer / denom
            numer *= x[i] * x[i];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }

        result[i] = value;
    }
}
```

This program, compiled with gcc will run as one thread on one of the processor cores.

If each of the simpler processor cores was 25% slower than the original single complicated one, our program now runs 25% slower. :-(

CMU 15-418, Spring 2013
Expressing parallelism using pthreads

typedef struct {
 int N;
 int terms;
 float* x;
 float* result;
} my_args;

void sinx(int N, int terms, float* x, float* result) {
 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;
 for (int j=1; j<=terms; j++) {
 value += sign * numer / denom
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;
 }
 result[i] = value;
}

void parallel_sinx(int N, int terms, float* x, float* result) {
 pthread_t thread_id;
 my_args args;
 args.N = N/2;
 args.terms = terms;
 args.x = x;
 args.result = result;
 pthread_create(&thread_id, NULL, my_thread_start, &args); // launch thread
 sinx(N - args.N, terms, x + args.N, result + args.N); // do work
 pthread_join(thread_id, NULL);
}

void my_thread_start(void* thread_arg) {
 my_args thread_args = (my_args)thread_arg;
 sinx(args.N, args.terms, args.x, args.result); // do work
}
Data-parallel expression
(in Kayvon’s fictitious data-parallel language)

```c
void sinx(int N, int terms, float* x, float* result)
{
    // declare independent loop iterations
    forall (int i from 0 to N-1)
    {
        float value = x[i];
        float numer = x[i] * x[i] * x[i];
        int denom = 6; // 3!
        int sign = -1;

        for (int j=1; j<=terms; j++)
        {
            value += sign * numer / denom
            numer *= x[i] * x[i];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }

        result[i] = value;
    }
}
```

Parallelism visible to compiler
(loop iterations are known to be independent)

With this information, you could imagine how a compiler might automatically generate parallel threaded code.
Four cores: compute four elements in parallel
Sixteen cores: compute sixteen elements in parallel

Sixteen cores, sixteen simultaneous instruction streams
Multi-core examples

Intel Core i7 quad-core CPU (2010)

NVIDIA Tesla GPU (2009)
16 cores
Add ALUs to increase compute capability

Idea #2:
Amortize cost/complexity of managing an instruction stream across many ALUs

SIMD processing
Single instruction, multiple data

Same instruction broadcast to all ALUs
Executed in parallel on all ALUs
Add ALUs to increase compute capability

Recall original compiled program:

Instruction stream processes one array element at a time using scalar instructions on scalar registers (e.g., 32-bit floats)
void sinx(int N, int terms, float* x, float* result)
{
 for (int i=0; i<N; i++)
 {
 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;
 }

 result[i] = value;
 }
}
Vector program (using AVX intrinsics)

```c
#include <immintrin.h>
void sinx(int N, int terms, float* x, float* result)
{
    for (int i=0; i<N; i+=8)
    {
        __m256 origx = _mm256_load_ps(&x[i]);
        __m256 value = origx;
        __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx));
        __m256 denom = _mm256_broadcast_ss(6); // 3!
        int sign = -1;

        for (int j=1; j<=terms; j++)
        {
            // value += sign * numer / numer
            __m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom);
            value = _mm256_add_ps(value, tmp);

            numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx));
            denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3)));
            sign *= -1;
        }
        _mm256_store_ps(&result[i], value);
    }
}
```

Intrinsics available to C programmers
Vector program (using AVX intrinsics)

```c
#include <immintrin.h>
void sinx(int N, int terms, float* x, float* sinx)
{
  for (int i=0; i<N; i+=8)
  {
    __m256 origx = _mm256_load_ps(&x[i]);
    __m256 value = origx;
    __m256 numer = _mm256_mul_ps(origx, __m256_mul_ps(origx, origx));
    __m256 denom = _mm256_broadcast_ss(6); // 3!
    int sign = -1;

    for (int j=1; j<=terms; j++)
    {
      // value += sign * numer / numer
      __m256 tmp = _mm256_div_ps(__m256_mul_ps(__m256_broadcast_ss(sign), numer), denom);
      value = _mm256_add_ps(value, tmp);

      numer = __m256_mul_ps(numer, __m256_mul_ps(origx, origx));
      denom = __m256_mul_ps(denom, __m256_broadcast_ss((2*j+2) * (2*j+3)));
      sign *= -1;
    }
    _mm256_store_ps(&sinx[i], value);
  }
}
```

Compiled program:
Processes eight array elements simultaneously using vector instructions on 256-bit vector registers
16 SIMD cores: 128 elements in parallel

16 cores, 128 ALUs, 16 simultaneous instruction streams
Data-parallel expression
(in Kayvon’s fictitious data-parallel language)

```c
void sinx(int N, int terms, float* x, float* result)
{
    // declare independent loop iterations
    forall (int i from 0 to N-1)
    {
        float value = x[i];
        float numer = x[i] * x[i] * x[i];
        int denom = 6; // 3!
        int sign = -1;

        for (int j=1; j<=terms; j++)
        {
            value += sign * numer / denom
            numer *= x[i] * x[i];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }

        result[i] = value;
    }
}
```

Parallelism visible to compiler
Facilitates automatic generation of vector instructions
What about conditional execution?

(assume logic below is to be executed for each element in input array 'A', producing output into the array 'result')

```cpp
float x = A[i];
if (x > 0) {
  float tmp = exp(x, 5.f);
  tmp *= kMyConst1;
  x = tmp + kMyConst2;
} else {
  float tmp = kMyConst1;
  x = 2.f * tmp;
}
result[i] = x;
```
What about conditional execution?

(assume logic below is to be executed for each element in input array 'A', producing output into the array 'result')

```c
float x = A[i];
if (x > 0) {
    float tmp = exp(x, 5.f);
    tmp *= kMyConst1;
    x = tmp + kMyConst2;
} else {
    float tmp = kMyConst1;
    x = 2.f * tmp;
}
result[i] = x;
```
Mask (discard) output of ALU

Not all ALUs do useful work!
Worst case: 1/8 peak performance

Time (clocks)

ALU 1 ALU 2 ALU 8

T T F T F F F F

(assume logic below is to be executed for each element in input array 'A', producing output into the array 'result')

<float tmp = exp(x,5.f);
tmp *= kMyConst1;
x = tmp + kMyConst2;
}
else {
 float tmp = kMyConst1;
 x = 2.f * tmp;
}

<resume unconditional code>

result[i] = x;
After branch: continue at full performance

(assume logic below is to be executed for each element in input array 'A', producing output into the array 'result')

```c
if (x > 0) {
  float tmp = exp(x, 5.f);
  tmp *= kMyConst1;
  x = tmp + kMyConst2;
} else {
  float tmp = kMyConst1;
  x = 2.f * tmp;
}

result[i] = x;
```
Terminology

- “Coherent” execution
 - Same instruction sequence applies to all elements operated upon simultaneously
 - Coherent execution is necessary for efficient use of SIMD processing resources
 - Coherent execution is NOT necessary for efficient parallelization across cores

- “Divergent” execution
 - A lack of coherence

- Not to be confused with “cache coherence”
 (a major topic later in the course)
SIMD execution on modern CPUs

- **SSE instructions**: 128-bit operations: 4x32 bits or 2x64 bits (4-wide float vectors)

- **AVX instructions**: 256 bit operations: 8x32 bits or 4x64 bits (8-wide float vectors)
 - New in 2011

- **Instructions generated by compiler**
 - Parallelism explicitly given by programmer using intrinsics
 - Parallelism conveyed by parallel language semantics (e.g., `forall` example)
 - Parallelism inferred by dependency analysis of loops (hard problem, even best compilers not that great on arbitrary C/C++ code)

- **“Explicit SIMD”**: SIMD parallelization performed at compile time
 - Can inspect program binary and see instructions (`vstoreps`, `vmulps`, etc.)
SIMD execution on modern GPUs

- "Implicit SIMD"
 - Compiler generates a scalar binary
 - N instances of the program are *always run* together:
 execute(my_function, N) // execute my_function N times
 - Hardware maps instances to ALUs

- SIMD width of modern GPUs is 32 to 64 floats **
 - Divergence can be a big issue

** It’s a little more complicated than that, but if you think about it this way it’s fine
Example: Intel Core i7 (Sandy Bridge)

On campus:

Machines in GHC 5201/5205:
4 cores
4 SIMD ALUs per core

Machines in GHC 3000:
6 cores
4 SIMD ALUs per core
Example: NVIDIA GTX 480

15 cores
32 SIMD ALUs per core
1.3 TFLOPS

(in GHC 5205)
Summary: parallel execution

- **Several types of parallel execution in modern processors**
 - Multi-core: use multiple cores
 - Provides thread-level parallelism: simultaneously execute completely different instruction stream on each core
 - Software decides when to create threads (e.g., via pthreads API)
 - SIMD: use multiple ALUs controlled by same instruction stream (within a core)
 - Efficient: control amortized over many ALUs
 - Vectorization can be done by compiler (explicit SIMD) or at runtime by hardware
 - [Lack of] dependencies known prior to execution (declared or inferred)
 - Superscalar: exploit ILP. Process different instructions from the same instruction stream in parallel (within a core)
 - Parallelism automatically and dynamically discovered by the hardware during execution (not programmer visible)

Not addressed further in this class
Part 2: memory
Terminology

- Memory latency
 - The amount of time for a memory request (e.g., load, store) from a processor to be serviced by the memory system
 - Example: 100 cycles, 100 nsec

- Memory bandwidth
 - The rate at which the memory system can provide data to a processor
 - Example: 20 GB/s
Stalls

- A processor “stalls” when it cannot run the next instruction in an instruction stream because of a dependency on a previous instruction.

- Accessing memory is a major source of stalls

```
ld r0 mem[r2]  
ld r1 mem[r3]  
add r0, r0, r1
```

- Memory access times ~ 100’s of cycles
 - LATENCY: the time it takes to complete an operation
Caches reduce length of stalls (reduce latency)

Processors run efficiently when data is resident in caches
(caches reduce memory access latency, also provide high bandwidth)

L1 cache (32 KB)
L2 cache (256 KB)
L3 cache (8 MB)

21 GB/sec

Memory
DDR3 DRAM
(Gigabytes)
Prefetching reduces stalls (hides latency)

- All modern CPUs have logic for prefetching data into caches
 - Dynamically analyze program’s access patterns, predict what it will access soon

- Reduces stalls since data is resident in cache when accessed

```
predict value of r2, initiate load
predict value of r3, initiate load
...
...
...
...
...
...
ld r0 mem[r2]
ld r1 mem[r3]
add r0, r0, r1
```

Note: Prefetching can also reduce performance if guess is wrong (hogs bandwidth, pollutes caches)

(more detail later in course)
Multi-threading reduces stalls

- Idea: Interleave processing of multiple threads on the same core to hide stalls

- Like prefetching, multi-threading is a latency hiding, not a latency reducing technique
Hiding stalls with multi-threading

Thread 1
Elements 1 ... 8

Time

1 Core (1 thread)

Fetch/Decode

ALU 1 ALU 2 ALU 3 ALU 4
ALU 5 ALU 6 ALU 7 ALU 8

Ctx Ctx Ctx Ctx
Ctx Ctx Ctx Ctx

Shared Ctx Data
Hiding stalls with multi-threading

Thread 1
Elements 1 ... 8

Thread 2
Elements 9 ... 16

Thread 3
Elements 17 ... 24

Thread 4
Elements 25 ... 32

Time

1 Core (4 threads)
Hiding stalls with multi-threading

Thread 1
Elements 1 … 8

Thread 2
Elements 9 … 16

Thread 3
Elements 17 … 24

Thread 4
Elements 25 … 32

Time

Runnable

Stall

1 Core (4 threads)

Fetch/Decode

ALU 1

ALU 2

ALU 3

ALU 4

ALU 5

ALU 6

ALU 7

ALU 8
Hiding stalls with multi-threading

Thread 1
Elements 1 ... 8
Runnable
Done!

Thread 2
Elements 9 ... 16
Runnable
Stall
Runnable
Done!

Thread 3
Elements 17 ... 24
Runnable
Stall
Runnable
Done!

Thread 4
Elements 25 ... 32
Runnable
Stall
Runnable
Done!

1 Core (4 threads)

Fetch/Decode
ALU 1
ALU 2
ALU 3
ALU 4
ALU 5
ALU 6
ALU 7
ALU 8
Throughput computing

Key idea of throughput-oriented systems: Increase time to completion for any one thread in order to increase overall system throughput when running multiple threads.

During this time, this thread is runnable, but it is not being executed by the processor. (The core is running some other thread.)
Storing contexts

Context storage
(or L1 cache)
Many small contexts (high latency hiding ability)

1 core (18 threads)
Four large contexts (low latency hiding ability)

1 core (4 threads)

fetch/decode

alu 1 alu 2 alu 3 alu 4
alu 5 alu 6 alu 7 alu 8

1 2 3 4
Hardware-supported multi-threading

- Core manages execution contexts for multiple threads
 - Runs instructions from runnable threads (processor makes decision about which thread to run each clock, not the operating system)
 - Core still has the same number of ALU resources, multi-threading only helps use them more efficiently in the face of high-latency operations

- Interleaved multi-threading (a.k.a. temporal multi-threading)
 - What I’ve described here: each clock, core chooses a thread to run on the ALUs

- Simultaneous multi-threading (SMT)
 - Each clock, core chooses instructions from multiple threads to run on ALUs
 - Extension of superscalar CPU design
 - Intel Hyper-threading (2 threads per core)
Multi-threading summary

- **Benefit:** more efficiently use core’s ALU resources
 - Fill multiple functional units of superscalar architecture (when one thread has insufficient ILP)
 - Hide memory latency

- **Costs**
 - Requires additional storage for thread contexts
 - Increases run time of any single thread (often not a problem, we usually care about throughput in parallel apps)
 - Requires additional parallelism in a program (more parallelism than ALUs)
 - Relies heavily on memory bandwidth
 - More threads → larger working set → less cache space per thread
 - Go to memory more often, but can hide the latency
Kayvon’s fictitious multi-core chip

16 cores

8 SIMD ALUs per core
(128 total)

4 threads per core

16 simultaneous instruction streams

64 total concurrent instruction streams

512 independent pieces of work are needed to run chip with maximal latency hiding ability
GPUs: Extreme throughput-oriented processors

NVIDIA GTX 480 core

- SIMD function unit, control shared across 16 units (1 MUL-ADD per clock)

- Instructions operate on 32 pieces of data at a time (called “warp/s”).
- Think: warp = thread issuing 32-wide vector instructions
- Up to 48 warps are simultaneously interleaved
- Over 1500 elements can be processed concurrently by a core

Source: Fermi Compute Architecture Whitepaper
CUDA Programming Guide 3.1, Appendix G
NVIDIA GTX 480: more detail (just for the curious)

NVIDIA GTX 480 core

- Fetch/Decode
- Execution contexts (128 KB)
- “Shared” memory (16+48 KB)

= SIMD function unit, control shared across 16 units (1 MUL-ADD per clock)

- Why is a warp 32 elements and there are only 16 SIMD ALUs?

- It’s a bit complicated: ALUs run at twice the clock rate of rest of chip. So each decoded instruction runs on 32 pieces of data on the 16 ALUs over two ALU clocks. (but to the programmer, it behaves like a 32-wide SIMD operation)

Source: Fermi Compute Architecture Whitepaper
CUDA Programming Guide 3.1, Appendix G
NVIDIA GTX 480: more detail (just for the curious)

NVIDIA GTX 480 core

= SIMD function unit, control shared across 16 units (1 MUL-ADD per clock)

- This process occurs on another set of 16 ALUs as well
- So there's 32 ALUs per core
- $15 \times 32 = 480$ ALUs per chip

Source: Fermi Compute Architecture Whitepaper
CUDA Programming Guide 3.1, Appendix G
Recall, there are 15 cores on the GTX 480: That’s 23,000 pieces of data being processed concurrently!
CPU vs. GPU memory hierarchies

CPU:
- Big caches, few threads, modest memory BW
- Rely mainly on caches and prefetching

GPU:
- Small caches, many threads, huge memory BW
- Rely mainly on multi-threading

Memory
- DDR3 DRAM (Gigabytes)
- DDR5 DRAM (~1 GB)
Thought experiment

Task: element-wise multiplication of two vectors A and B

Assume vectors contain millions of elements

1. Load input $A[i]$
2. Load input $B[i]$
3. Compute $A[i] \times B[i]$
4. Store result into $C[i]$

Three memory operations (12 bytes) for every MUL
NVIDIA GTX 480 GPU can do 480 MULs per clock (1.4 GHz)
Need ~ 8.4 TB/sec of bandwidth to keep functional units busy (only have 177 GB/sec)

$\sim 2\%$ efficiency... but 8x faster than CPU!
(3GHz Core i7 quad-core CPU connected to 25 GB/sec memory bus will exhibit similarly low efficiency on this computation)
Bandwidth limited!

If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Overcoming bandwidth limits are a common challenge for application developers on throughput-optimized systems.
Bandwidth is a critical resource

Performant parallel programs will:

- Fetch data from memory less often
 - Reuse data in a thread (traditional locality optimizations)
 - Share data across threads (cooperation)

- Request data less often (instead, do more math: it is “free”)
 - Term: “arithmetic intensity” - ratio of math operations to data access operations in an instruction stream
Summary

- Three major ideas that all modern processors employ to varying degrees
 - Employ multiple processing cores
 - Simpler cores (embrace thread-level parallelism over instruction-level parallelism)
 - Amortize instruction stream processing over many ALUs (SIMD)
 - Increase compute capability with little extra cost
 - Use multi-threading to make more efficient use of processing resources (hide latencies, fill all available resources)

- Due to high arithmetic capability on modern chips, many parallel applications (on both CPUs and GPUs) are bandwidth bound

- GPUs push throughput computing concepts to extreme scales
 - Notable differences in memory system design
Know these terms

- Multi-core processor
- SIMD execution
- Coherent execution
- Hardware multi-threading
 - Interleaved multi-threading
 - Simultaneous multi-threading
- Memory latency
- Memory bandwidth
- Bandwidth bound application
- Arithmetic intensity