Lecture 6:

GPU Architecture & CUDA Programming

Parallel Computer Architecture and Programming
CMU 15-418, Spring 2013
Today

- History: how graphics processors, originally, designed to accelerate applications like Quake, evolved into compute engines for a broad class of applications

- GPU programming in CUDA

- A more detailed look at GPU architecture
Recall basic GPU architecture

Multi-core chip
SIMD execution within a single core (many ALUs performing the same instruction)
Multi-threaded execution on a single core (multiple threads executed concurrently by a core)
Graphics 101 + GPU history
(for fun)
3D rendering

Model of a scene:
3D surface geometry (e.g., triangle mesh)
surface materials
 lights
 camera

Rendering: computing how each triangle contributes to appearance of each pixel in the image?
How to explain a system

- Step 1: describe the **things** (key entities) that are manipulated
 - The nouns
Real-time graphics primitives (entities)

- Vertices
- Primitives (e.g., triangles, points, lines)
- Fragments
- Pixels (in an image)
How to explain a system

- **Step 1**: describe the **things** (key entities) that are manipulated
 - The nouns

- **Step 2**: describe operations the system performs on the entities
 - The verbs
Real-time graphics pipeline (operations)

1. Vertices in 3D space
2. Vertices in positioned on screen
3. Triangles positioned on screen
4. Fragments (one fragment for each covered pixel per triangle)
5. Shaded fragments (color of surface at corresponding pixel)

Vertex Creation and Processing
- Vertex Generation
 - Vertex stream
- Vertex Processing
 - Vertex stream

Primitive Creation and Processing
- Primitive Generation
 - Primitive stream
- Primitive Processing
 - Primitive stream

Fragment Creation and Processing
- Fragment Generation (Rasterization)
 - Fragment stream
- Fragment Processing
 - Fragment stream

Pixel Processing
- Pixel Operations

Output image (pixels)
Example materials
Early graphics programming (OpenGL API)

- Graphics programming APIs (OpenGL) supported a parameterized model for lights and materials. Application programmer could set parameters.

- `glLight(light_id, parameter_id, parameter_value)`
 - 10 parameters (e.g., ambient/diffuse/specular color, position, direction, etc.)

- `glMaterial(face, parameter_id, parameter_value)`
 - Parameter examples (surface color, shininess)
Graphics shading languages

- Allow application to specify materials and lights programmatically!
 - support large diversity in materials
 - support large diversity in lighting conditions

- Programmer provides mini-programs (“shaders”) that defines pipeline logic for certain stages
Example fragment shader *

Run once per fragment (per pixel covered by a triangle)

HLSL language shader program:
defines behavior of fragment processing stage

```hlsl
sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;
float4 diffuseShader(float3 norm, float2 uv) {
  float3 kd;
  kd = myTex.Sample(mySamp, uv);
  kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
  return float4(kd, 1.0);
}
```

myTex is a texture map

```
myTex =
```

Run once per fragment (per pixel covered by a triangle)

read-only globals

```
read-only globals
```

per-fragment inputs

```
per-fragment inputs
```

```
```

per-fragment output: surface color at pixel

```
per-fragment output: surface color at pixel
```

"fragment shader" (a.k.a kernel function mapped onto fragment stream)

```
"fragment shader" (a.k.a kernel function mapped onto fragment stream)
```

* syntax/details of code not important to 15-418, what is important is that it's a kernel function operating on a stream of inputs.*
Shaded result

Image contains output of `diffuseShader` for each pixel covered by surface
(Pixels covered by multiple surfaces contain output from surface closest to camera)
Observation circa 2001-2003

These GPUs are very fast processors for performing the same computation (shaders) on collections of data (streams of vertices, fragments, pixels)

Wait a minute! That sounds a lot like data-parallelism to me!

(I remember data-parallelism from exotic supercomputers in the 90s)
Hack! early GPU-based scientific computation

Example: use graphics pipeline to update position of set of particles in a physics simulation

Set screen size to be output array size (e.g., M by N)

Render 2 triangles that exactly cover screen
(one shader computation per pixel = one shader computation per array element)

Write shader function so that output color (r,g,b) encoded new particle \(\{x,y,z\} \) position
“GPGPU” 2002-2003

GPGPU = “general purpose” computation on GPUs

Coupled Map Lattice Simulation [Harris 02]

Ray Tracing on Programmable Graphics Hardware [Purcell 02]

Sparse Matrix Solvers [Bolz 03]
Brook language (2004)

- Research project
- Abstract GPU as data-parallel processor

```c
kernel void scale(float amount, float a<>, out float b<>)
{
    b = amount * a;
}

// note: omitting initialization
float scale_amount;
float input_stream<1000>;
float output_stream<1000>;

// map kernel onto streams
scale(scale_amount, input_stream, output_stream);
```

- Brook compiler turned generic stream program into OpenGL commands such as drawTriangles
GPU Compute Mode
NVIDIA Tesla architecture (2007)
(GeForce 8xxx series)
Provided alternative, non-graphics-specific (“compute mode”) software interface to GPU

Multi-core CPU architecture
CPU presents itself to system software (OS) as multi-processor system
ISA provides instructions for managing context (program counter, VM mappings, etc.) on a per core basis

Pre-2007 GPU architecture
GPU presents following interface** to system software (driver):
Set screen size
Set shader program for pipeline
DrawTriangles

Post-2007 “compute mode” GPU architecture
GPU presents a new data-parallel interface to system software (driver):
Set kernel program
Launch(kernel, N)

(** interface also included many other commands for configuring graphics pipeline)
CUDA programming language

- Introduced in 2007 with NVIDIA Tesla architecture

- C-like language to express programs that run on GPUs using the compute-mode hardware interface

- Relatively low-level: (low abstraction distance) CUDA’s abstractions closely match the capabilities/performance characteristics of modern GPUs

- Note: OpenCL is an open standards version of CUDA
 - CUDA only runs on NVIDIA GPUs
 - OpenCL runs on CPUs *and* GPUs from many vendors
 - Almost everything I say about CUDA also holds for OpenCL
 - At this time CUDA is better documented, thus I find it preferable to teach with
The plan

1. CUDA programming abstractions
2. CUDA implementation on modern GPUs
3. More detail on GPU architecture

Things to consider throughout this lecture:

- Is CUDA a data-parallel programming model?
- Is CUDA an example of the shared address space model?
- Or the message passing model?
- Can you draw analogies to ISPC instances and tasks? What about pthreads?
Clarification (here we go again...)

- I am going to describe CUDA abstractions using CUDA terminology

- Specifically, be careful with the use of the term CUDA thread. A CUDA thread presents a similar abstraction as a pthread, but it’s implementation is very different

- We will discuss these differences at the end of the lecture.
CUDA programs consist of a hierarchy of concurrent threads

Thread IDs can be up to 3-dimensional (2D example below)
Multi-dimensional thread ids are convenient for problems that are naturally n-D

```
const int Nx = 12;
const int Ny = 6;

// kernel definition
__global__ void matrixAdd(float A[Ny][Nx],
                          float B[Ny][Nx],
                          float C[Ny][Nx])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    C[i][j] = A[i][j] + B[i][j];
}

/////////////////////////////////////////////

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
                Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
```
CUDA programs consist of a hierarchy of concurrent threads

SPMD execution of device code:
Each thread computes its overall grid thread id from its position in its block (threadIdx) and its block’s position in the grid (blockIdx)

```
const int Nx = 12;
const int Ny = 6;

// kernel definition
__global__ void matrixAdd(float A[Ny][Nx],
                           float B[Ny][Nx],
                           float C[Ny][Nx])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    C[i][j] = A[i][j] + B[i][j];
}

// launch a grid of thread blocks
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

"Device" code: SPMD execution
kernel function (denoted by __global__) runs on co-processing device (GPU)

"Host" code: serial execution
Running as part of normal C/C++ application on CPU

Bulk launch of many threads
Precisely: launch a grid of thread blocks
Call returns when all threads have terminated
Clear separation of host and device code

Separation of execution into host and device code is performed statically by the programmer.

```
const int Nx = 12;
const int Ny = 6;

__device__ floatdoubleValue(float x)
{
  return 2 * x;
}

// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
                                  float B[Ny][Nx],
                                  float C[Ny][Nx])
{
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  int j = blockIdx.y * blockDim.y + threadIdx.y;

  C[i][j] = A[i][j] + doubleValue(B[i][j]);
}

int threadsPerBlock = 3 * 4;
int numBlocks = (Nx / threadsPerBlock.x) * (Ny / threadsPerBlock.y);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<numBlocks, threadsPerBlock>>>(A, B, C);
```
Number of SPMD threads is explicit in program

Number of kernel invocations is not determined by size of data collection
(Kernel launch is not map(kernel, collection) as was the case with graphics shader programming)

```
const int Nx = 11;  // not a multiple of threadsPerBlock.x
const int Ny = 5;   // not a multiple of threadsPerBlock.y

__global__ void matrixAdd(float A[Ny][Nx],
                          float B[Ny][Nx],
                          float C[Ny][Nx])
{
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  int j = blockIdx.y * blockDim.y + threadIdx.y;

  // guard against out of bounds array access
  if (i < Nx && j < Ny)
    C[i][j] = A[i][j] + B[i][j];
}

////////////////////////////////////////////////////////////////////////////////

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
```
Execution model

Host
(serial execution)

Implementation: CPU

Device
(SPMD execution)

Implementation: GPU
Memory model
Distinct host and device address spaces

Host
(serial execution)

Host memory address space

Implementation: CPU

Device
(SPMD execution)

Device “global” memory address space

Implementation: GPU
memcpy primitive

Move data between address spaces

```
float* A = new float[N];  // allocate buffer in host mem

// populate host address space pointer A
for (int i=0; i<N; i++)
  A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA;  // allocate buffer in
cudaMalloc(&deviceA, bytes);  // device address space

// populate deviceA
cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

// note: deviceA[i] is an invalid operation here (cannot
// manipulate contents of deviceA directly from host.
// Only from device code.)
```

What does cudaMemcpy remind you of?

(Async variants also exist)
CUDA device memory model

Three** distinct types of memory visible to device-side code

** There are actually five: the “constant memory” and “texture memory” address spaces are not discussed here (carried over from graphics shading languages)
CUDA synchronization constructs

- __syncthreads()
 - Barrier: wait for all threads in the block to his this point

- Atomic operations
 - e.g., float atomicAdd(float* addr, float amount)
 - Atomic operations on both global memory and shared memory variables

- Host/device synchronization
 - Implicit barrier across all threads at return of kernel
Example: 1D convolution

output[i] = (input[i] + input[i+1] + input[i+2]) / 3.f;
1D convolution in CUDA
One thread per output element

```c
#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

  __shared__ float support[THREADS_PER_BLK+2]; // shared across block
  int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable

  support[threadIdx.x] = input[index];
  if (threadIdx.x < 2) {
    support[THREADS_PER_BLK + threadIdx.x] = input[index+THREADS_PER_BLK];
  }

  __syncthreads();

  float result = 0.0f; // thread-local variable
  for (int i=0; i<3; i++)
    result += support[threadIdx.x + i];

  output[index] = result / 3.f;
}
```

// host code
int N = 1024 * 1024
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...
convolve<<<N/THREAD_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);
```
CUDA abstractions

- **Execution: thread hierarchy**
  - Bulk launch of many threads (this is imprecise... I’ll clarify later)
  - Two-level hierarchy: threads are grouped into blocks

- **Distributed address space**
  - Built-in memcpy primitives to copy between host and device address spaces
  - Three types of variables in device space
    - Per thread, per block (“shared”), or per program (“global”)
      (can think of types as residing within different address spaces)

- **Barrier synchronization primitive for threads in thread block**

- **Atomic primitives for additional synchronization** (shared and global variables)
CUDA semantics

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {
  __shared__ float support[THREADS_PER_BLK+2]; // shared across block
  int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local
  support[threadIdx.x] = input[index];
  if (threadIdx.x < 2) {
    support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
  }
  __syncthreads();

  float result = 0.0f; // thread-local variable
  for (int i=0; i<3; i++)
    result += support[threadIdx.x + i];
  output[index] = result / 3.f;
}

// host code ///////////////////////////////////////////////////////////////////////////////////////////////
int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREAD_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

Consider pthreads:

Call to pthread_create():
Allocate thread state:
  - Stack space for thread
  - Allocate control block so OS can schedule thread

Will CUDA program create 1 million instances of local variables/stack?

8K instances of shared variables? (support)

launch over 1 million CUDA threads (over 8K thread blocks)
Assigning work

High-end GPU
(16 cores)

Mid-range GPU
(6 cores)

Want CUDA program to run on all of these GPUs without modification

Note: no concept of num_cores in the CUDA programs I have shown: CUDA thread launch is similar in spirit to forall loop in data parallel model examples
# define THREADS_PER_BLK 128
__global__ void convolve(int N, float* input, float* output) {

__shared__ float support[THREADS_PER_BLK+2]; // shared across block
int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local

support[threadIdx.x] = input[index];
if (threadIdx.x < 2) {
    support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
}

__syncthreads();

float result = 0.0f; // thread-local variable
for (int i=0; i<3; i++)
    result += support[threadIdx.x + i];

output[index] = result;
}

// host code //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...
convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

A compiled CUDA device binary includes:

Program text (instructions)
Information about required resources:
- 128 threads per block
- X bytes of local data per thread
- 130 floats (520 bytes) of shared space per block

launch over 8K thread blocks
CUDA thread-block assignment

Grid of 8K convolve thread blocks (specified by kernel launch)

Kernel launch command from host
launch(blockDim, convolve)

Special HW in GPU

Thread block scheduler

Block resource requirements:
- (contained in compiled kernel binary)
  - 128 threads
  - 520 bytes of shared mem
  - 128X bytes of local mem

Major CUDA assumption: thread block execution can be carried out in any order (no dependencies)

Implementation assigns thread blocks ("work") to cores using dynamic scheduling policy that respects resource requirements

Shared mem is fast on-chip memory

Device global memory (DRAM)
NVIDIA Fermi: per-core resources

NVIDIA GTX 480 core

- Fetch/Decode
- Fetch/Decode
- Execution contexts (128 KB)
- “Shared” memory (up to 48 KB)

Core Limits:
48 KB of shared memory
Up to 1,536 CUDA threads

In the case of convolve():
Thread count constrains the number of blocks that can be scheduled on a core at once: to twelve

At kernel launch: semi-statically partition core into 12 thread block contexts = 1,536 thread contexts
(allocate these up front, at launch)
Think of these as the “workers”
(note: number of workers is chip resource dependent. Number of logical CUDA threads is NOT)

Reuse context resources for many blocks. GPU scheduler assigns blocks dynamically assigned to core over duration of computation!

Source: Fermi Compute Architecture Whitepaper
CUDA Programming Guide 3.1, Appendix G
Steps in creating a parallel program

1. **Problem to solve**
2. **Decomposition**
   - Subproblems (a.k.a. “tasks”, “work to do”)
3. **Assignment**
   - Parallel Threads **
4. **Orchestration**
   - Parallel program (communicating threads)
5. **Mapping**
6. **Execution on parallel machine**
Pools of worker “threads”

Problem to solve

Decomposition

Sub-problems (aka “tasks”, “work”)

Worker Threads

Assignment

Best practice: create enough workers to “fill” parallel machine, and no more:
- One worker per parallel execution resource (e.g., CPU core)
- N workers per core (where N is large enough to hide memory/IO latency)
- Pre-allocate resources for each worker
- Dynamically assign tasks to worker threads. (reuse allocation for many tasks)

Examples:
- Thread pool in a web server
  - Number of threads is a function of number of cores, not number of outstanding requests
  - Threads spawned at web server launch, wait for work to arrive
- ISPC’s implementation of launch[] tasks
  - Creates one pthread for each hyper-thread on CPU. Threads kept alive for remainder of program
Assigning CUDA threads to core execution resources

CUDA thread block has been assigned to core
How do we execute the logic for the block?

```c
#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {
 __shared__ float support[THREADS_PER_BLK+2];
 int index = blockIdx.x * blockDim.x + threadIdx.x;

 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2) {
 support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
 }

 __syncthreads();

 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];

 output[index] = result;
}
```

- SIMD function unit, control shared across 16 units (1 MUL-ADD per clock)
Fermi warps: groups of threads sharing instruction stream

CUDA kernels execute as SPMD programs

On NVIDIA GPUs groups of 32 CUDA threads share an instruction stream. These groups called “warps”.

A convolve thread block is executed by 4 warps (4 warps * 32 threads/warp = 128 CUDA threads per block)

(Note: warps are an important implementation detail, but not a CUDA abstraction)
Executing warps

NVIDIA Fermi core has two independent groups of 16-wide SIMD ALUs (clocked at 2x rate of rest of chip)
Each “slow” clock, core’s warp scheduler: ***
1. Selects 2 runnable warps (warps that are not stalled)
2. Decodes instruction for each warp (can be different instructions)
3. For each warp, executes instruction for all 32 CUDA threads using 16 SIMD ALUs over two fast clocks (chip has SIMD divergence behavior of 32-wide SIMD)
Why allocate execution contexts for all threads in block?

128 logical CUDA threads

Only 2 warps worth of parallel execution in HW

Why not have a pool of two “worker” warps?

CUDA kernels may create dependencies between threads in a block

Simplest example is __syncthreads()

Threads in a block cannot be executed by the system in any order when dependencies exist.

CUDA semantics: threads in a block ARE running concurrently. If a thread in a block is runnable it will eventually be run! (no deadlock)
CUDA execution semantics

- Thread blocks can be scheduled in any order by the system
  - System assumes no dependencies
  - A lot like ISPC tasks, right?

- Threads in a block DO run concurrently
  - When block begins, all threads are running concurrently
    (these semantics impose a scheduling constraint on the system)
  - A CUDA thread block is itself an SPMD program (like an ISPC gang of program instances)
  - Threads in thread-block are concurrent, cooperating “workers”

- CUDA implementation:
  - A Fermi warp has performance characteristics akin to an ISPC gang of instances (but unlike an ISPC gang, a warp is not manifest in the programming model)
  - All warps in a thread block are scheduled onto the same core, allowing for high-BW/low latency communication through shared memory variables
  - When all threads in block complete, block resources become available for next block
Implications of CUDA atomics

- Notice that I did not say CUDA thread blocks were independent. I only claimed they can be scheduled in any order.
- CUDA threads can atomically update shared variables in global memory
  - Example: build a histogram of values in an array
- Observe how this use of atomics does not impact implementation’s ability to schedule blocks in any order (atomics for mutual exclusion, and nothing more)
Implications of CUDA atomics

- But what about this?
- Consider single core GPU, resources for one block per core
  - What are the possible outcomes of different schedules?

```
// do stuff
atomicAdd(&myFlag, 1);

while(atomicAdd(&myFlag, 0) == 0)
{
}
// do stuff
```

Global memory

```
int myFlag
(assume initialized to 0)
```
“Persistent thread” technique

```c
// define THREADS_PER_BLK 128
#define BLOCKS_PER_CHIP 15 * 12 // specific to a certain GTX 480 GPU

__device__ int workCounter = 0; // global mem variable

__global__ void convolve(int N, float* input, float* output) {
 __shared__ int startingIndex;
 __shared__ float support[THREADS_PER_BLK+2]; // shared across block

 while (1) {
 if (threadIdx.x == 0)
 startingIndex = atomicInc(workCounter, THREADS_PER_BLK);
 __syncthreads();
 if (startingIndex >= N)
 break;

 int index = startingIndex + threadIdx.x; // thread local
 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2)
 support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
 __syncthreads();

 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];
 output[index] = result;
 __syncthreads();
 }
}

// host code ///
int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory
// properly initialize contents of devInput here ...
convolve<<<BLOCKS_PER_CHIP, THREADS_PER_BLK>>>(N, devInput, devOutput);
```

Write CUDA code that makes assumption about number of cores of underlying GPU implementation:

Programmer launches exactly as many thread-blocks as will fill the GPU
(Exploit knowledge of implementation: that GPU will in fact run all blocks concurrently)

Work assignment to blocks is implemented entirely by the application (circumvents GPU thread block scheduler, and intended CUDA thread block semantics)

Now programmer’s mental model is that *all* threads are concurrently running on the machine at once.
CUDA summary

- **Execution semantics**
  - Partitioning of problem into thread blocks is in the spirit of the data-parallel model (intended to be machine independent: system schedules blocks onto any number of cores)
  - Threads in a thread block run concurrently (they have to, since they cooperate)
    - Inside block: SPMD shared address space programming
  - There are subtle, but notable differences between these models of execution. Make sure you understand it. (And ask yourself what semantics are being used whenever you encounter a parallel programming system)

- **Memory semantics**
  - Distributed address space: host/device memories
  - Thread local/block shared/global variables within device memory
    - Loads/stores move data between them (so it's correct to think about local/shared/global as distinct address spaces)

- **Key implementation details:**
  - Threads in a thread block are scheduled onto same GPU core to allow fast communication through shared memory
  - Threads in a thread block are grouped into warps for SIMD execution on GPU hardware
NVIDIA Kepler GK104 architecture SMX unit (one “core”)

- Warp execution contexts (256 KB)
- "Shared" memory or L1 data cache (64 KB)

- SIMD function unit, control shared across 32 units (1 MUL-ADD per clock)
- "special" SIMD function unit, control shared across 32 units (operations like sin/cos)
- SIMD load/store unit (handles warp loads/stores, gathers/scatters)
Bonus slides: NVIDIA GTX 680 (2012)

NVIDIA Kepler GK104 architecture SMX unit (one “core”)

- **SMX core resource limits:**
  - Maximum warp execution contexts: 64 (2,048 total CUDA threads)
  - Maximum thread blocks: 16

- **SMX core operation each clock:**
  - Select up to four runnable warps from up to 64 resident on core (thread-level parallelism)
  - Select up to two runnable instructions per warp (instruction-level parallelism)
  - Execute instructions on available groups of SIMD ALUs, special-function ALUs, or LD/ST units
Bonus slides: NVIDIA GTX 680 (2012)

NVIDIA Kepler GK104 architecture

- 1 GHz clock
- Eight SMX cores per chip
- $8 \times 192 = 1,536$ SIMD mul-add ALUs
  $= 3$ TFLOPs
- Up to 512 interleaved warps per chip
  (16,384 CUDA threads/chip)
- TDP: 195 watts

L2 cache
(256 KB)

shared+L1
(64 KB)

Memory
256 bit interface
DDR5 DRAM

192 GB/sec