Lecture 25:

Addressing the Memory Wall

(þ One Cool Parallel Algorithm)

Parallel Computer Architecture and Programming
CMU 15-418, Spring 2013
Announcements

- Exam 2 on Tuesday
 - You can bring one post-it note

- Exam review session on Sunday at 5pm
 - Please come with questions

- Final project checkpoint reports due by Friday night
Once again: data transfer is costly!

Limits performance
- Multiple processors
 - higher aggregate rate of memory requests
 - need for more bandwidth
(result: bandwidth-limited execution)

High energy cost
- Recall “rough ballpark” numbers from heterogeneity lecture earlier in semester:
 - ~ 20 pJ for an floating-point math op
 - ~ 1000 pJ to load 64 bits from LPDDR memory
Exploit locality: avoid redundant transfers (bring frequently used data closer to processor)

- Computations with **locality** reuse data in local memories (caches, scratchpads)
 - Localize data (load from memory), access many times before discarding/storing it
 - Processor has high-bandwidth (and low latency) access to local memories
 - If computation has locality, most data accessed at this high rate
- Programmers go to great effort to improve the cache locality of their programs
eDRAM: another level of the memory hierarchy

- High-end offerings of the next generation Intel processors (Haswell) will feature 128 MB of embedded DRAM (eDRAM) in the CPU package.

IBM Power 7 server CPUs feature eDRAM.

GPU in XBox 360 has 10 MB of embedded DRAM to store the frame buffer.
Increase bandwidth: hybrid memory cube

- Enabling technology: 3D stacking of DRAM chips
 - DRAMs connected via through-silicon-vias (TSVs) that run through the chips
 - Base layer “logic layer” is DRAM controller, manages requests from processor
 - TSVs provide highly parallel (high BW) connection between logic layer and DRAMs
 - 8-link configuration: 320 GB/sec between CPU and memory cube

Image credits: Micron, Inc.
Note: height not to scale (actual package not much thicker than a traditional chip)
Move computation to data

Simple example: web application makes SQL query against large user database

Laptop

Web Application Server

DB Server

DB Server

DB Server
Memcpy: data movement through entire processor cache hierarchy
DRAM operation (load one byte)

1. Activate row
2. Transfer row
3. Transfer byte onto bus
Idea: perform copy without processor

Modify memory system to support load, store, BULK COPY

1. Activate row A
2. Transfer row
3. Activate row B
4. Transfer row

DRAM array

Row Buffer (4 Kbits)

Data pins (8 bits)

Memory Bus

[Seshadri 13]
Compress data

- Idea: Increase effective cache capacity by compressing data resident in cache
 - More cache hits = fewer transfers
 - Expend computation (compression/decompression) to save bandwidth

- Compress/decompression scheme must
 - Be simple enough to implement in HW
 - Be fast: decompression is on critical path of load
One proposed example: BΔI compression [Pekhimenko 12]

- Observation: data that falls within cache line often has low dynamic range (use base + offset to encode chunks of bits in a line)

- How does implementation quickly find a good base?
 - Use first word in line
 - Compression/decompression of line is data-parallel
Does this pattern compress well?

<table>
<thead>
<tr>
<th>4 bytes</th>
<th>4 bytes</th>
<th>32-byte Uncompressed Cache Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000000</td>
<td>0x9A40178</td>
<td>0x0000000B 0x00000001 0x9A4A838</td>
</tr>
<tr>
<td>0x000000A</td>
<td>0x0000000B</td>
<td>0x9A4C2F0</td>
</tr>
</tbody>
</table>
Does this pattern compress well?

- **Idea:** use multiple bases for more robust compression

- **Challenge:** how to efficiently choose the two bases?
 - **Solution:** always use 0 as one of the bases (added benefit: don’t need to store the 2nd base)
 - **Algorithm:**
 1. Attempt to compress with 0 base
 2. Compress remaining elements using first uncompressed element as base
Effect of cache compression

- On average: ~ 1.5x compression ratio
- Translates into ~ 10% performance gain, up to 18% on cache sensitive workloads
Bandwidth reducing trick in ARM GPUs

- Frame-buffer write during rendering is a bandwidth-heavy operation
- Idea: skip frame-buffer write if it is unnecessary
 - Frame 1:
 - Render frame tile at a time
 - Compute hash for each tile on screen
 - Frame 2:
 - Render frame tile at a time
 - Before writing pixel values for tile, compute hash and see if tile is the same as last frame
 - If yes, skip write

Slow camera motion: 96% of writes avoided
Fast camera motion: Still ~50% of writes avoided

- GPUs compress frame-buffer contents prior to write to save bandwidth (data compressed in memory, unlike previous example where data was compressed when in cache)

Summary: memory wall is being addressed in many ways

- **By application programmer**
 - Schedule computation to maximize locality (minimize data movement)

- **In hardware implementation by architects**
 - Bring data closer to processor (deep cache hierarchies, eDRAM)
 - Increase bandwidth (wider memory systems, near future: 3D stacking)
 - Ongoing research in located limited computation “in” or near memory

- **General principles**
 - Locate data near processor
 - Move computation to storage
 - Data compression (trade-off extra computation for less data transfer)
Bonus slides:
A fun parallel algorithm that I think you will enjoy:
the NT method
Limited range force computation

Goal: compute interactions between all particles located within distance R

Partition space into P regions (one region per processor)

Two sets of particles:

“Home” region: $\sim b^2$
(particles in gray box, “owned” by processor P)

“Import” region: $\sim 4bR + \pi R^2$
(particles that must be communicated to processor P to perform computation)

Number of interactions carried out by processor P is proportional to product of the two terms:

$\sim b^2(4bR + \pi R^2)$
Limited range force computation: scaling

Goal: compute interactions between all particles located within distance R

Consider comm. to comp. ratio as $P \to \infty$:

Note: $b \sim 1/\sqrt{P}$

Import region shrinks to πR^2

Home region shrinks to 0
Particle A interacts with particle B in square with x coord equal to that of A and y coord equal to that of B. (yellow square)

Import region of the yellow square associated with processor P is highlighted ROW and highlighted COLUMN.

Size of import region = 4bR
Size of import region as P → ∞ = 0
Assuming $R > b$ (true for high processor count), most particle interactions computed by processor upon which neither particle resides!

Intuition: In the NT method the two sets of interacting particles (column and row) are the same size. Recall number of interactions is the product of these sizes.

Analogy: perimeter of a square is greater than any other quadrilateral with the same area.
Extending to 3D

- Divide space into $b_x \times b_y \times b_z$ cells
- Want to avoid computing interaction between each particle pair twice

Half-shell interaction rules for particles A and B (applied in this order):
- If $A_x < B_x$ interact in home box of A
- If $A_y < B_y$ interact in home box of A
- If $A_z < B_z$ interact in home box of A
- If A and B are in the same box, no movement is necessary for interaction.
NT intuition

Half-Shell Method
- Perform computation in box with smaller X coordinate

Neutral-Territory Method
- Perform computation in box with X coordinate from particle with smaller X coordinate and Z coordinate from particle with larger X coordinate

= computation performed by processor responsible for this region of space
Extending NT method to 3D

- Divide space into $b_x \times b_y \times b_z$ cells

- NT interaction rules for particles A and B (applied in this order):
 - If $A_x < B_x$ A is in the tower
 - If $A_y < B_y$ A is in the tower
 - If $A_z < B_z$ A is in the plate
 - If A and B are in the same box, choose arbitrarily

- Two particles will interact in box with x,y coordinate of tower and z coordinate of plate
Scaling

Number of Processors

<table>
<thead>
<tr>
<th></th>
<th>64</th>
<th>512</th>
<th>4K</th>
<th>32K</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NT method asymptotics (3D)

- **Half-shell method**
 - Import volume $V = 3Rb^2 + (3/2)\pi R^2b + (2/3)\pi R^2$
 - As $P \to \infty$: $V = (2/3)\pi R^2$

- **NT-method**
 - Import volume $V = 2Rb_{xy}^2 + 2Rb_z^2 + (1/2)\pi R^2b_z$
 - As $P \to \infty$: $V = O(R^{3/2} / \sqrt{p})$

Note: $b \sim$ cube root of p
NT method summary

- In N-body problems, communication-to-computation ratio increases as number of processors gets large

- Unintuitive solution: reduce communication requirements by ALWAYS communicating
 - Pick a “neutral processor” to perform computation between two particles