Lecture 6:
Programming for Performance, Part 1:
Work Distribution

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2014
Tunes

The Heavy

Colleen

(Great Vengeance and Furious Fire)

“Colleen? Ha, that wasn’t about a girl. We wrote that one about the dangers of premature program optimization. It burns everyone, and it’s certainly burned me.”

- Kelvin Swaby
Today

- Review mapping of CUDA programming to GPUs
- Solver example in the message passing model
- Begin discussing techniques for optimizing parallel programs
Finishing up a few CUDA concepts...
SMX core operation each clock:
- Select up to four runnable warps from up to 64 resident on core (thread-level parallelism)
- Select up to two runnable instructions per warp (instruction-level parallelism)
- Execute instructions on available groups of SIMD ALUs, special-function ALUs, or LD/ST units
Imagine a thread block with 256 CUDA threads
Only 4 warps worth of parallel execution in HW
Why not just have a pool of four “worker” warps?
(e.g., run 4x32=128 threads in block to completion, then run next 128 threads in block)

CUDA kernels may create dependencies between threads in a block
Simplest example is __syncthreads()
Threads in a block cannot be executed by the system in any order when dependencies exist.
CUDA semantics: threads in a block ARE running concurrently. If a thread in a block is runnable it will eventually be run! (no deadlock)
CUDA execution semantics

- Thread blocks can be scheduled in any order by the system
 - System assumes no dependencies
 - A lot like ISPC tasks, right?

- Threads in a block DO run concurrently
 - When block begin execution, all threads are running concurrently
 (these semantics impose a scheduling constraint on the system)
 - A CUDA thread block is itself an SPMD program (like an ISPC gang of program instances)
 - Threads in thread-block are concurrent, cooperating “workers”

- CUDA implementation:
 - A Kepler GPU warp has performance characteristics akin to an ISPC gang of instances (but
 unlike an ISPC gang, the warp concept is not CUDA programming model concept *)
 - All warps in a thread block are scheduled onto the same core, allowing for high-BW/low
 latency communication through shared memory variables
 - When all threads in block complete, block resources (shared memory allocations, warp
 execution contexts) become available for next block

* Exceptions to this statement include intra-warp builtin operations like swizzle and vote
Implications of CUDA global memory atomics

- Last class I pointed out that GPUs schedule CUDA thread blocks in any order.
- CUDA threads can atomically update shared variables in global memory
 - Example: build a histogram of values in an array
- Observe how this use of atomics does not impact implementation’s ability to schedule blocks in any order (I’m using atomics for mutual exclusion, and nothing more)
Implications of CUDA atomics

- But what about this?
- Consider a single core GPU with execution resources for one block per core
 - What are the possible outcomes of different schedules?

```c
// do stuff
atomicAdd(&myFlag, 1);

while(atomicAdd(&myFlag, 0) == 0) {
    // do stuff
}
```

Global memory

```
int myFlag
(assume initialized to 0)
```
"Persistent thread" technique for CUDA programming

Some developers write CUDA code that makes assumptions about number of cores in the underlying GPU's implementation:

Programmer launches exactly as many thread-blocks as will fill the GPU
(Exploit knowledge of implementation: that GPU will in fact run all blocks concurrently)

Work assignment to blocks is implemented entirely by the application
(circumvents GPU thread block scheduler, and intended CUDA thread block semantics)

Now programmer's mental model is that *all* threads are concurrently running on the machine at once.
Finally... let’s finish up the solver discussion from lecture 4...
Recall basic 2D grid solver

Solver example: described in terms of data parallelism and SPMD programming models

\[
\]
Review: data-parallel solver implementation

- **Synchronization:**
 - `forall` loop iterations are independent (can be parallelized)
 - Implicit barrier at end of outer `forall` loop body

- **Communication**
 - Implicit in loads and stores (like shared address space)
 - Special built-in primitives: e.g., `reduce`

```c
int n; // grid size
bool done = false;
float diff = 0.0;

// allocate grid, use block decomposition across processors
float **A = allocate(n+2, n+2, BLOCK_Y, NUM_PROCESSORS);

void solve(float** A) {
    while (!done) {
        for_all (red cells (i,j)) {
            float prev = A[i,j];
            reduceAdd(diff, abs(A[i,j] - prev));
        }
        if (diff/(n*n) < TOLERANCE)
            done = true;
    }
}
```

Example from: Culler, Singh, and Gupta
Solver implementation in two programming models

- **Data-parallel programming model**
 - **Synchronization:**
 - forall loop iterations are independent (can be parallelized)
 - Implicit barrier at end of outer forall loop body
 - **Communication**
 - Implicit in loads and stores (like shared address space)
 - Special built-in primitives: e.g., reduce

- **Shared address space**
 - **Synchronization:**
 - Locks (for mutual exclusion) and barriers (to separate phases of computation) are used to express dependencies
 - **Communication**
 - Implicit in loads/stores to shared variables
Today: message passing model

- No shared address space abstraction (i.e., no shared variables)
- Each thread has its own address space
- Threads communicate & synchronize by sending/receiving messages

One possible message passing machine implementation: a cluster of workstations (recall lecture 3)
Review: assignment in a shared address space

- Grid data resided in a single array in shared address space
 - Array was accessible to all threads

- Each thread manipulated the region it was assigned to process
 - Assignment decisions impacted performance
 - Different assignments could yield different amounts of communication
Message passing model

- Grid data stored in four separate address spaces (four private arrays)
Replication required to perform computation

Required for correctness

"Ghost cells": Grid cells replicated from remote address space. It's common to say that information in ghost cells is "owned" by other threads.

Example:
Thread 1 and 3 send row to thread 2 (otherwise thread 2 cannot update its local cells)

Thread 2 logic:

cell_t ghost_row_top[N+2]; // ghost row storage
cell_t ghost_row_bot[N+2]; // ghost row storage

int bytes = sizeof(cell_t) * (N+2);
recv(ghost_row_top, bytes, pid-1, TOP_MSG_ID);
recv(ghost_row_bot, bytes, pid+1, BOT_MSG_ID);

// Thread 2 now has data necessary to perform // computation
Message passing solver

Note similar structure to shared address space solver, but now communication is explicit in message sends and receives

Example pseudocode from: Culler, Singh, and Gupta

```c
1. int pid, n, b;
2. float **myA;
3. main()
4. begin
5.   read(n);  read(nprocs); /*read input matrix size and number of processes*/
6.   CRATES (nprocs-1, Solve);
7. end main
8a. Solve(); /*main process becomes a worker too*/
8b. CREATE(nprocs-1, Solve);
8c. WAIT_FOR_END(nprocs-1); /*wait for all child processes created to terminate*/
9. end main
10. procedure Solve()
11. begin
12.   int i,j, pid, n' = n/nprocs, done = 0;
13.   float temp, tempdiff, mydiff = 0; /*private variables*/
14.   myA <- malloc(a 2-d array of size [n/nprocs + 2] by n+2); /*my assigned rows of A*/
15.   initialize(myA); /*initialize my rows of A, in an unspecified way*/
16.   mvdiff = 0; /*set local diff to 0*/
16a. if (pid != 0) then SEND(&myA[1, 0], n*sizeof(float), pid-1, ROW);
16b. if (pid != nprocs-1) then
16c.     SEND(&myA[0, n'], n*sizeof(float), pid+1, ROW);
16d. if (pid != 0) then RECEIVE(&myA[0, 0], n*sizeof(float), pid-1, ROW);
16e. if (pid != nprocs-1) then
16f.     RECEIVE(&myA[n'+1, 0], n*sizeof(float), pid+1, ROW);
/*border rows of neighbors have now been copied into myA[0,0] and myA[n'+1,0]*/
17. for i ← 1 to n' do /*for each of my (nonghost) rows*/
18.   for j ← 1 to n do /*for all nonborder elements in that row*/
19.     temp = myA[i, j];
21.     mydiff += abs(myA[i, j] - temp);
22.   endfor
23. endfor
/*communicate local diff values and determine if done; can be replaced by reduction and broadcast*/
24a. if (pid != 0) then
24b.     SEND(mydiff, sizeof(float), 0, DONE);
24c. else /*pid 0 does this*/
24d.     for i ← 1 to nprocs-1 do /*for each other process*/
24e.       RECEIVE(tempdiff, sizeof(float), *DIFF);
24f.     mydiff += tempdiff; /*accumulate into total*/
25.     endfor
25a. if (mydiff/(n*n) < TOL) then done = 1;
25b. for i ← 1 to nprocs-1 do /*for each other process*/
25c. if (pid != nprocs-1) then
25d.     SEND(done, sizeof(int), i, DONE);
25e.     endfor
25f.     endfor
26. endwhile
27. end procedure
```
Notes on message passing example

- **Computation**
 - Array indexing is relative to local address space (not global grid coordinates)

- **Communication**:
 - Performed through messages
 - Communicate entire rows at a time (not individual elements)

- **Synchronization**:
 - Performed through sends and receives
 - Think of how to implement mutual exclusion, barriers, flags using messages

- For convenience: message passing libraries often include higher-level primitives (implemented using send and receive)

```c
REDUCE(0, mydiff, sizeof(float), ADD);
if (pid == 0) then
  if (mydiff/(n*n) < TOL) then done = 1;
endif
  BROADCAST(0, done, sizeof(int), DONE);
```

Alternative solution using reduce/broadcast constructs
Variants of send and receive messages

Synchronous

- SEND: call returns when sender receives acknowledgement message data resides in address space of receiver
- RECV: call returns when data from message copied into address space of receiver and acknowledgement sent back to sender

Sender:
- Call SEND(foo)
- Copy data from sender’s address space buffer ‘foo’ into network buffer
- Send message
- Receive ack
- SEND() returns

Receiver:
- Call RECV(bar)
- Receive message
- Copy data into receiver’s address space buffer ‘bar’
- Send ack
- RECV() returns
As implemented on the prior slide, if our message passing solver uses blocking send/recv it would deadlock!

Why?

How can we fix it?
(while still using blocking send/recv)
Message passing solver

Example from: Culler, Singh, and Gupta
Variants of send and receive messages

Send/Recv

- Synchronous
- Asynchronous
 - Blocking async
 - Non-blocking async

Blocking async:
- **SEND**: call copies data from address space into system buffers, then returns
 - Does not guarantee message has been received (or even sent)
- **RECV**: call returns when data copied into address space, but no ack sent

<table>
<thead>
<tr>
<th>Sender:</th>
<th>Receiver:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call SEND(foo)</td>
<td>Call RECV(bar)</td>
</tr>
<tr>
<td>Copy data from sender’s address space buffer ‘foo’ into network buffer</td>
<td>Receive message</td>
</tr>
<tr>
<td>SEND(foo) returns, calling thread continues execution</td>
<td>Copy data into receiver’s address space buffer</td>
</tr>
<tr>
<td>Send message</td>
<td>RECV(bar) returns</td>
</tr>
</tbody>
</table>

RED TEXT = executes concurrently with application thread
Variants of send and receive messages

- **Synchronous**
- **Asynchronous**
 - **Blocking async**
 - **Non-blocking async**

Non-blocking async: (“non-blocking”)

- **SEND**: call returns immediately. Buffer provided to SEND cannot be modified by calling thread since message processing occurs concurrently with thread execution
- **RECV**: call posts intent to receive, returns immediately.
- Use SENDPROBE, RECVPROBE to determine actual send/receipt status

Sender:
- Call SEND(foo)
- SEND(foo) returns handle h1
- Copy data from ‘foo’ into network buffer
- Send message
- Call SENDPROBE(h1) // if message sent, now safe for thread to modify ‘foo’

Receiver:
- Call RECV(bar)
- RECV(bar) returns handle h2
- Receive message
- Messaging library copies data into ‘bar’
- Call RECVPROBE(h2) // if received, now safe for thread
- // to access ‘bar’

RED TEXT = executes concurrently with application thread
Variants of send and receive messages

The variants of send/recv provide different levels of programming complexity / opportunity to optimize performance
Solver implementation in THREE programming models

1. Data-parallel model
 - Synchronization:
 - \texttt{forall} loop iterations are independent (can be parallelized)
 - Implicit barrier at end of outer \texttt{forall} loop body
 - Communication
 - Implicit in loads and stores (like shared address space)
 - Special built-in primitives: e.g., \texttt{reduce}

2. Shared address space model
 - Synchronization:
 - Locks used to ensure mutual exclusion
 - Barriers used to express coarse dependencies (e.g., between phases of computation)
 - Communication
 - Implicit in loads/stores to shared variables

3. Message passing model
 - Synchronization:
 - Implemented via messages
 - Mutual exclusion exists by default: no shared data structures
 - Communication:
 - Explicit communication via send/recv needed for parallel program correctness
 - Bulk communication for efficiency: e.g., communicate entire rows, not single elements
 - Several variants of send/recv, each has different semantics
Optimizing parallel program performance

(how to be l33t)
Programming for high performance

- Optimizing the performance of parallel programs is an iterative process of refining choices for decomposition, assignment, and orchestration...

- Key goals (that are at odds with each other)
 - Balance workload onto available execution resources
 - Reduce communication (to avoid stalls)
 - Reduce extra work performed to increase parallelism, manage assignment, etc.

- We are going to talk about a rich space of techniques
 - TIP #1: Always do the simplest thing first, then measure/analyze
 - “It scales” = your code scales as much as you need it to (if you anticipate only running low core count machines, it may be unnecessary to implement a complex approach that created hundreds or thousands of pieces of independent work)
Balancing the workload

Ideally all processors are computing all the time during program execution (they are computing simultaneously, and they finish their portion of the work at the same time).

Recall Amdahl's Law:
Only small amount of load imbalance can significantly bound maximum speedup.

P4 does 20% more work → P4 takes 20% longer to complete
→ 20% of parallel program runtime is essentially serial execution
(clarification: work in serialized section here is about 5% of a sequential program's execution time; S=.05 in Amdahl's law eqn)
Static assignment

- Assignment of work to threads is pre-determined
 - Not necessarily compile-time (assignment algorithm may depend on runtime parameters such as input data size, number of threads, etc.)

- Recall solver example: assign equal number of grid cells to each thread
 - We discussed blocked and interleaved static assignments

- Good properties: simple, essentially zero runtime overhead
 (in this example: extra work to implement assignment is a little bit of indexing math)
Static assignment

- When is static assignment applicable?

- When the cost (execution time) of work and the amount of work is predictable

- Simplest example: it is known that all work has the same cost
Static assignment

- When is static assignment applicable?
 - Example 2: predictable, but not all jobs have same cost (see example below)
 - Example 3: When statistics about execution time are known (e.g., same cost on average)

Jobs have unequal, but known cost: assign to processors to ensure overall good load balance
“Semi-static” assignment

- Cost of work predictable for near-term future
 - Recent past good predictor of near future
- Periodically profile application and re-adjust assignment
 - Assignment is static during interval between re-adjustment

Particle simulation:
Redistribute particles as they move over course of simulation
(if motion is slow, redistribution need not occur often)

Adaptive mesh:
Mesh is changed as object moves or flow over object changes, but changes occur slowly (color indicates assignment of parts of mesh to processors)
Dynamic assignment

- Assignment is determined at runtime to ensure a well distributed load.
 (The execution time of tasks, or the total number of tasks, is unpredictable.)

Sequential program
(independent loop iterations)

```c
int N = 1024;
int* x = new int[N];
bool* prime = new bool[N];

// initialize elements of x
for (int i = 0; i < N; i++)
{
    // unknown execution time
    is_prime[i] = test_primality(x[i]);
}
```

Parallel program
(SPMD execution of multiple threads, shared address space model)

```c
LOCK counter_lock;
int counter = 0; // shared variable (assume initialization to 0)

int N = 1024;
int* x = new int[N];
bool* is_prime = new bool[N];

// initialize elements of x
while (1) {
    int i;
    lock(counter_lock);
    i = counter++;
    unlock(counter_lock);
    if (i >= N)
        break;
    is_prime[i] = test_primality(x[i]);
}
```

atomic_incr(counter);
Dynamic assignment using work queues

Sub-problems
(a.k.a. “tasks”, “work”)

Shared work queue: a list of work to do
(for now, let’s assume each piece of work is independent)

Worker threads:
Pull data from shared work queue
Push new work to queue as it’s created
What constitutes a piece of work?

What is a potential problem with this implementation?

```
LOCK counter_lock;
int counter = 0;     // shared variable (assume
                   // initialization to 0)
const int N = 1024;
float* x = new float[N];
bool* prime = new bool[N];

// initialize elements of x

while (1) {
    int i;
    lock(counter_lock);
    i = counter++;
    unlock(counter_lock);
    if (i >= N)
        break;
    is_prime[i] = test_primality(x[i]);
}
```

Fine granularity partitioning:
Here: 1 “task” = 1 element

Likely good workload balance (many small tasks)
Potential for high synchronization cost
(serialization at critical section)

Time in task 0

Time in critical section

This is overhead that
does not exist in serial
program

And.. it’s serial execution
Recall Amdahl’s law:
What is S here?

So... IS this a problem?
Increasing task granularity

Coarse granularity partitioning:
1 “task” = 10 elements

Decreased synchronization cost
(Critical section entered 10 times less)

So... have we done better?

Time in task 0
Time in critical section
What is S now?

LOCK counter_lock;
int counter = 0; // shared variable (assume
 // initialization to 0)
const int N = 1024;
const int GRANULARITY = 10;
float* x = new float[N];
bool* prime = new bool[N];

// initialize elements of x

while (1) {
 int i;
 lock(counter_lock);
 i = counter;
 counter += GRANULARITY;
 unlock(counter_lock);
 if (i >= N)
 break;
 int end = min(i + GRANULARITY, N);
 for (int j=i; j<end; j++)
 is_prime[i] = test_primality(x[i]);
}

CMU 15-418, Spring 2014
Rule of thumb

- Useful to have many more tasks* than processors
 (many small tasks enables good workload balance via dynamic assignment)
 - Motivates small granularity tasks

- But want as few tasks as possible to minimize overhead of managing the assignment
 - Motivates large granularity tasks

- Ideal granularity depends on many factors
 (Common theme in this course: must know your workload, and your machine)

* I had to pick a term. Here I’m using “task” generally: it’s a piece of work, a sub-problem, etc.
Smarter task scheduling

Consider dynamic scheduling via a shared work queue

What happens if the system assigns these tasks to workers in left-to-right order?
Smarter task scheduling

What happens if scheduler runs the long task last? Potential for load imbalance!

One possible solution to imbalance problem:

Divide work into a larger number of smaller tasks

- Hopefully “long pole” gets shorter relative to overall execution time
- May increase synchronization overhead
- May not be possible (perhaps long task is fundamentally sequential)
Smarter task scheduling

Schedule long task first to reduce “slop” at end of computation

Another solution: smarter scheduling

Schedule long tasks first

- Thread performing long task performs fewer overall tasks, but approximately the same amount of work as the other threads.
- Requires some knowledge of workload (some predictability of cost)
Decreasing synchronization overhead

- **Distributed work queues**
 - Replicate data to remove synchronization

Subproblems
(a.k.a. “tasks”, “work to do”)

Set of work queues
(In general, one per worker thread)

Worker threads:
- Pull data from OWN work queue
- Push new work to OWN work to queue

When local work queue is empty...

STEAL work from another work queue
Distributed work queues

- **Costly synchronization/communication occurs during stealing**
 - But not every time a thread takes on new work
 - Stealing occurs *only when necessary* to ensure good load balance

- **Leads to increased locality**
 - Common case: threads work on tasks they create (producer-consumer locality)

- **Implementation challenges**
 - Who to steal from?
 - How much to steal?
 - How to detect program termination?
 - Ensuring local queue access is fast (while preserving mutual exclusion)
Work in task queues need not be independent

A task is not removed from queue and assigned to worker thread until all task dependencies are satisfied.

Workers can submit new tasks (with optional explicit dependencies) to task system.
Summary

- **Challenge: achieving good workload balance**
 - Want all processors working at all times
 - But want low cost to achieve this balance
 - Minimize computational overhead (e.g., scheduling/assignment logic)
 - Minimize synchronization costs

- **Static assignment vs. dynamic assignment**
 - Really, it’s not an either/or decision, there’s a continuum of choices
 - Use up-front knowledge about workload as much as possible to reduce load imbalance and task management/synchronization costs (in the limit, if the system knows everything, use fully static assignment)

- **Issues discussed today span decomposition, assignment, and orchestration**