Lecture 9:

Workload-Driven Performance Evaluation

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2014
Macklemore & Ryan Lewis

Ten Thousand Hours
(The Heist)

“I wanted to start The Heist by giving a shout out to all those students putting the work in for 15-418. To get good at something you’ve got to love what you do and you’ve got to put in the work. You’ve got to think about it every day, you’ve got to fight to understand every little bit. There’s no way around it. And that’s what they’re doing.”

- Ben Haggerty
Course road map

- Modern multi-core chip architectures: multi-core + SIMD execution + HW multi-threading
- Ways to think about parallelism and communication
 - At the abstraction level -- programming models: shared memory, message passing, data parallelism
 - At the hardware level -- machine organizations and implementation
- How to write and optimize parallel programs
 -
- Case studies and example techniques
- Evaluating system performance
- Shared address space implementation details (memory coherence and consistency)
 -
- Exam I
You are hired by [insert your favorite chip company here].

You walk in on day one, and your boss says “All of our senior architects have decided to take the year off. Your job is to lead the design of our next parallel processor.”

What questions might you ask?
Your boss selects the application that matters most to the company
“\textit{I want you to demonstrate good performance on this application.}”

How do you know if you have a good design?

- **Absolute performance?**
 - Often measured as wall clock time
 - Another example: operations per second

- **Speedup: performance improvement due to parallelism?**
 - Execution time of sequential program / execution time on P processors
 - Operations per second on P processors / operations per second of sequential program

- **Efficiency?**
 - Performance per unit resource
 - e.g., operations per second per chip area, per dollar, per watt
Measuring scaling

- Should speedup be measured against the performance of a parallel version of a program running on one processor, or the best sequential program?
Parallel implementation of binning

Sequential algorithm

```c
list cell_lists[16]; // 2D array of lists

for each particle p
  c = compute cell containing p
  append p to cell_lists[c]
```

Implementation 1: Parallel over particles

```c
list cell_list[16]; // 2D array of lists
lock cell_list_lock;

for each particle p  // in parallel
  c = compute cell containing p
  lock(cell_list_lock)
  append p to cell_list[c]
  unlock(cell_list_lock)
```

Implementation 2: parallel over grid cells

```c
list cell_lists[16]; // 2D array of lists

for each cell c  // in parallel
  for each particle p  // sequentially
    if (p is within c)
      append p to cell_lists[c]
```

Implementation 3: build separate grids and merge

Implementation 4: data-parallel sort

Step 1: compute cell containing each particle

<table>
<thead>
<tr>
<th>Array Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Step 2: sort results by cell

<table>
<thead>
<tr>
<th>Array Index</th>
<th>3</th>
<th>5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Step 3: find start/end of each cell

```c
cell = result[index]
if (index == 0 || cell != result[index-1]) {
  cell_starts[cell] = index;
  if (index > 0) // special case for first cell
    cell_ends[result[index-1]] = index;
}
if (index == numParticles-1) // special case for last cell
  cell_ends[cell] = index+1;
```

Common pitfall: compare parallel program speedup to parallel program on one core (easier to make yourself look good)
Speedup of ocean sim application: 258 x 258 grid

Execution on 32 processor SGI Origin 2000

Graph showing speedup of ideal and ocean simulations with varying number of processors. The x-axis represents the number of processors, ranging from 1 to 32, while the y-axis represents speedup, ranging from 0 to 30.
Remember: work assignment in solver

2D blocked assignment

\[N^2 \text{ elements} \]
\[P \text{ processors} \]

\[\text{elements computed:} \quad \frac{N^2}{P} \]
\[\text{(per processor)} \]

\[\text{elements communicated:} \quad \propto \frac{N}{\sqrt{P}} \]
\[\text{(per processor)} \]

\[\text{comm-to-comp ratio:} \quad \frac{\sqrt{P}}{N} \]

Small N yields large communication-to-computation ratio!
Pitfalls of fixed problem size speedup analysis
Ocean execution on 32 processor SGI Origin 2000

No benefit! (slight slowdown)
Problem is just too small for the machine (large communication-to-computation ratio)
Scaling the performance of small problem may not be important anyway (it might already execute fast enough on a uniprocessor)

258 x 258 grid on 32 processors: ~ 310 grid cells per processor
1K x 1K grid on 32 processors: ~ 32K grid cells per processor
Pitfalls of fixed problem size speedup analysis

Execution on 32 processor SGI Origin 2000

Here: super-linear speedup! with enough processors, key working set fits in per-processor cache

Another example: if problem size is too large for a single small machine, working set may not fit in memory: causing thrashing to disk

(this would make speedup look amazing!)
Understanding scaling: size matters!

- Application and system scaling parameters have complex interactions
 - Impact load balance, overhead, communication-to-computation ratios (inherent and artifactual), locality of data access
 - Effects can be dramatic and application dependent

- Evaluating a machine with a fixed problem size can be problematic
 - Too small a problem:
 - Parallelism overheads dominate parallelism benefits for large machines
 - May even result in slow downs
 - Problem size may be appropriate for small machines, but inappropriate for large ones
 (does not reflect real usage of large machine!)

 - Too large a problem: (problem size chosen to be appropriate for large machine)
 - May not “fit” in small machine
 (causing thrashing to disk, or key working set exceeds cache capacity, or can’t run at all)
 - When problem “fits” in a larger machine but not a small one, super-linear speedups can occur

 - Can be desirable to scale problem size as machine sizes grow
 (buy a bigger machine to compute more, rather than just compute the same size of problem faster)
Scaling machines

“Does it scale?”

- Ability to scale machines (or software parallelization strategies) is important

- Scaling **up**: how does machine’s performance scale with increasing core count?
 - Will design scale to the high end?

- Scaling **down**: how does its performance scale with decreasing processor count?
 - Will design scale to the low end?

- Parallel architectures are designed to work in a range of contexts
 - Same architecture used for low-end, medium-scale, and high-end systems
 - GPUs are a great example (e.g., GTX 650, GTX 670, and GTX 680 in the lab)
 - Same architecture, different numbers of SMX cores
Questions to ask when scaling a problem

- Under what constraints should the problem be scaled?
 - Fixed data set size, memory usage per processor, execution time, etc.?
 - Work may no longer be quantity that is fixed

- How should the problem be scaled?

- Problem size: often determined by more than one parameter
 - Determines amount of work done
 - Ocean example: \(\text{PROBLEM} = (n, \epsilon, \Delta t, T) \)
 - Grid size: \((n \times n)\)
 - Time step size
 - Convergence threshold of solver
 - Total time simulated by program (one day of flow)
Scaling constraints

- Application-oriented scaling properties (specific to application)
 - Particles per processor
 - Transactions per processor

- Resource-oriented scaling properties
 1. Problem constrained scaling (PC)
 2. Memory constrained scaling (MC)
 3. Time constrained scaling (TC)

User-oriented properties often more intuitive, but resource-oriented properties are more general, apply across domains.

(so we’ll talk about them here)
Problem-constrained scaling

- Focus: use a parallel computer to solve the same problem faster

\[
\text{Speedup} = \frac{\text{time 1 processor}}{\text{time P processors}}
\]

- Recall pitfalls from earlier in lecture (small problems not realistic workloads for large machines, big problems don’t fit on small machines)

- Examples of problem-constrained scaling:
 - Almost everything we’ve considered parallelizing in class so far
 - Assignments 1 and 2
Time-constrained scaling

- Focus: completing more work in a fixed amount of time
 - Execution time kept fixed as the machine (and problem) scales

\[
\text{Speedup} = \frac{\text{work done by } P \text{ processors}}{\text{work done by 1 processor}}
\]

- How to measure “work”?
 - Challenge: “work done” may not be linear function of values of problem inputs
 (e.g. matrix multiplication is $O(N^3)$ work for $O(N^2)$ sized inputs)
 - One approach: “work done” is defined by execution time of same computation on
 a single processor (but consider effects of thrashing if problem too big)
 - Ideally, a measure of work is:
 - Easy to understand
 - Scales linearly with sequential run time (So ideal speedup remains linear in P)
Time-constrained scaling examples

- Assignment 2 (real-time graphics)
 - Want real-time frame rate: ~ 30 fps
 - Faster GPU → use capability for more complex scene, not to render more frames per second

- Computational finance
 - Run most sophisticated model possible in: 1 hour, overnight, etc.

- Modern web sites
 - Want to generate complex page, respond to user in X milliseconds
 (studies show site usage directly corresponds to page load latency)
Memory-constrained scaling

- Focus: run the largest problem possible without overflowing main memory *
- Memory per processor held fixed
- Neither work or execution time are held constant

\[
\text{Speedup} = \frac{\text{work(P processors)} \times \text{time(1 processor)}}{\text{time(P processors)} \times \text{work(1 processor)}}
\]

= \frac{\text{work per unit time on P processors}}{\text{work per unit time on 1 processor}}

- Note: scaling problem size can make runtimes very large
 - Consider $O(N^3)$ matrix multiplication on $O(N^2)$ matrices

* Assumptions: (1) memory resources scale with processor count (2) spilling to disk is infeasible behavior (too slow)
Scaling examples at PIXAR

- Rendering a “shot” (a sequence of frames) in a movie
 - Minimizing time to completion (problem constrained)
 - Assign each frame to a different machine in the cluster

- Artists working to design lighting for a scene
 - Provide interactive frame rate to artist (time constrained)
 - More performance = higher fidelity representation shown to artist in allotted time

- Physical simulation: e.g., fluid simulation
 - Parallelize simulation across multiple machines to fit simulation grid in aggregate memory of processors (memory constrained)

- Final render of images for movie
 - Scene complexity bounded by memory available on farm machines
 - One barrier to exploiting additional parallelism is that footprint often increases with number of processors (memory constrained)
Case study: our 2D grid solver

- For \(n \times n \) grid:
 - \(O(n^2) \) memory requirement
 - \(O(n^2) \) grid elements \(\times \) \(O(n) \) convergence iterations... so total work increases as \(O(n^3) \)

- Problem-constrained scaling:
 - Execution time: \(1/P \)
 - Memory per processor: \(n^2/P \)
 - Concurrency: fixed at \(P \)
 - Comm-to-comp ratio: \(O(P^{1/2}) \) (for a 2D-blocked assignment)
Case study: our 2D grid solver

- For \(n \times n \) grid:
 - \(O(n^2) \) memory requirement
 - \(O(n^2) \) grid elements \(\times \) \(0(n) \) convergence iterations... so total work increases as \(O(n^3) \)

- Problem-constrained scaling: (remember: \(n \) is fixed)
 - Execution time: \(O(1/P) \)
 - Memory per processor: \(O(1/P) \)
 - Communication per processor: \(O(1/P^{1/2}) \)
 - Comm-to-comp ratio: \(O(P^{1/2}) \)
 (for a 2D-blocked assignment)

- Time-constrained scaling:
 - Let scaled grid size be \(k \times k \)
 - Assume linear speedup: \(k^3/P = n^3 \) (so \(k = np^{1/3} \))
 (computation time for \(k \times k \) grid on \(P \) processors =
 computation time for \(n \times n \) grid on 1 processor)
 - Execution time: fixed at \(O(n^3) \) (by defn of TC scaling)
 - Elements per processor: \(k^2/p = n^2/p^{1/3} \)
 - Comm-to-comp ratio: \(O(P^{1/6}) \)

- Memory-constrained scaling:
 - Let scaled grid size be \(nP^{1/2} \times nP^{1/2} \)
 - Execution time: \(O((nP^{1/2})^3/P) = O(P^{1/2}) \)
 - Elements per processor: \(O(n^2) \) fixed!
 (by definition of memory-constrained scaling)
 - Comm-to-comp ratio: \(O(1/n) \) fixed!

Implications:
Expect best “speedup” with MC scaling,
then TC scaling, worst with PC scaling.
(due to communication overheads)
Word of caution about problem scaling

- Problem size in the previous examples was a single parameter n

- In practice, problem size is a combination of parameters
 - Prior example from Ocean: $= (n, \varepsilon, \Delta t, T)$

- Problem parameters are often related (not independent)
 - Example from Barnes-Hut: increasing particle count n changes required simulation time step and force calculation accuracy parameter Θ

- Must be cognizant of these relationships when scaling problem in TC or MC scaling
Scaling summary

- Performance improvement due to parallelism is measured by **speedup**

- But speedup metrics take different forms for different scaling models
 - Which model matters most is application/context specific

- In addition to assignment and orchestration, behavior of a parallel program depends significantly on problem and machine scaling properties
 - When analyzing performance, be sure to analyze realistic regimes of operation (both realistic sizes and realistic problem size parameters)
 - Requires application knowledge
Back to our example of your hypothetical future job...

You have an idea for how to design a parallel machine to meet the needs of your boss.

How are you going to test this idea?
Evaluating an architectural idea: simulation

- Architects evaluate architectural decisions quantitatively using chip simulators
 - Run with new feature, run without feature, compare simulated performance
 - Simulate against a wide collection of benchmarks

- Design detailed simulator to test new architectural feature
 - Very expensive to simulate a parallel machine in full detail
 - Often cannot simulate full machine configurations or realistic problem sizes (must scale down workloads significantly!)
 - Architects need to be confident scaled down simulated results predict reality (otherwise, why do the evaluation at all?)
Execution-driven simulator

- Executes simulated program in software
 - Simulated processors generate memory references, which are processed by the simulated memory hierarchy

- Performance of simulator typically inversely proportional to level of simulated detail
 - Simulate every instruction? Simulate every bit on every wire?
Trace-driven simulator

- Instrument real code running on real machine to record a trace of all memory accesses
 - Statically (or dynamically) modify program binary
 - Example: Intel’s PIN (www.pintool.org)
 - May also need to record timing information to model contention in subsequent simulation

- Or generate trace using an execution-driven simulator

- Then play back trace on simulator
Architectural simulation state space

- Another evaluation challenge: dealing with large parameter space of machines
 - Num processors, cache sizes, cache line sizes, memory bandwidths, etc.

- Decide what parameters are relevant and prune space!

![Pareto Curve](plots energy/perf trade-off)

- Unrealistic operating point: cache too large
- Unrealistic operating point: miss rate too high

\[\text{Performance Density (ops/nS/mm}^2) \]

\[\text{Energy Per Operation (nJ/op)} \]
Scaling down (or up) challenges

- Preserve ratio of time spent in program phases
 - e.g., Ray-trace and Barnes-Hut: both have tree build and tree traverse phases
 - Shrinking screen size changes cost of tracing rays but not cost of building tree
 - Changing density of particles changes per particle cost in Barnes-Hut

- Preserve important behavioral characteristics
 - Communication-to-computation ratio, load balance, locality, working set sizes
 - e.g., shrinking grid size in solver changes communication to computation ratio

- Preserve contention and communication patterns
 - Tough to preserve contention since contention is a function of timing and ratios

- Preserve scaling relationships between problem parameters
 - e.g., Barnes-Hut: scaling up particle count requires scaling down time step for physics reasons
Example: scaling down Barnes-Hut

- **Problem size** = \((n, \Theta, \Delta t, T)\)
 - grid size
 - time step
 - accuracy threshold
 - total time to simulate

- Easiest parameter to scale down is likely \(T\) (just simulate less time)
 - Independent of the other parameters if simulation characteristics don’t vary much over time (but they probably do: gravity bodies particles together over time and performance depends on density)
 - On solution: select a few representative periods of time (e.g., sequence of time steps at beginning of sim, at end of sim)
Example: scaling down assignment 2

- **Problem size** = (w, h, num_circles, ...)

 ![Diagram of original image and smaller image](image-url)

 - Original image (w=8)
 - Smaller Image (1/2 size: w=4)

 Shrink image, but keep circle data the same:
 - Ratio of circle/box “filtering” work to per-pixel work changes
 - Concentration of circles in a tile changes

Alternative solution:
Render crop of full-size image

width-4 crop of original image

Original image (w=8)
Challenges of scaling problems up or down also apply to software developers debugging/tuning parallel programs running on real machines.

Common examples:

- **May want to log behavior of code for debugging**
 - Instrumentation slows down code significantly
 - Debug logs get untenable in size quickly

- **May want to debug/test/tune code on small problem on small machine before running two-week simulation on full problem size on a supercomputer**
Today’s summary: BE CAREFUL!

It can be very tricky to evaluate and tune parallel software and parallel machines.

It can be very easy to obtain misleading results or tune your code (or hardware design) for a workload that is not representative of real-world use cases.

It is helpful to precisely state your application goals. Then determine if your evaluation approach is consistent with those goals.
Some tricks for understanding the performance of parallel software
A key analysis strategy

- Determine if your performance is limited by computation, memory bandwidth (or memory latency), or synchronization?

- Try and establish “high watermarks”
 - What’s the best you can do?
 - How close is your implementation to a best case scenario?
Roofline model

- Use microbenchmarks to compute peak performance of a machine as a function of arithmetic intensity of application
- Then compare application’s performance to known peak values
Roofline model: optimization regions

- Use various levels of optimization in benchmarks (e.g., best performance with and without using SIMD instructions)

Figure credit: Williams et al. 2009
Establishing high watermarks *

Add “math” (non-memory instructions)
Does execution increase linearly with operation count as math is added?
(Evidence that code is instruction-rate limited)

Remove almost all math, but load same data
How much faster does your code get?
(This establishes an upper bound on benefit of exploiting locality)

Change all array accesses to A[0]
How much faster does your code get?
(This establishes an upper bound on benefit of exploiting locality)

Remove all atomic operations or locks
How much faster does your code get? (provided it still does approximately the same amount of work)
(This establishes an upper bound on benefit of reducing sync overhead.)

* Computation, memory access, and synchronization are almost never perfectly overlapped. As a result, overall performance will rarely be dictated entirely by compute or by bandwidth or by sync. Even so, the sensitivity of performance change to the above program modifications can be a good indication of dominant costs.