
CMU 15-418, Spring 2014

Notes on Parallel 
Sort

Parallel Computer Architecture and 
Programming

CMU 15-418/15-618, Spring 2014

1

Thursday, February 27, 14



CMU 15-418, Spring 2014

Parallel sort API
Inputs:
data: Input array (a[n/p])
procs: Number of processes (p)
procId: This process id (i)
dataSize: Aggregate data size (n)
localSize: Size of data on process i (~n/p)
Outputs:
sortedData: Sorted array (sorted)
localSize: Size of sorted data on process I

Important: set localSize to sortedData array size 
to pass the result checking, 0 to skip.

2

Thursday, February 27, 14



CMU 15-418, Spring 2014

Parallel sort using MPI
Step 1: Choosing pivots to define buckets

Step 2: Bucketing elements of the input array

Step 3: Redistributing elements

Step 4: Final local sort

Note: This is only the idea (a sketch) of the algorithm, 
not it’s implementation
Think of how you will implement this with MPI

3

Thursday, February 27, 14



CMU 15-418, Spring 2014 4

Step 1: Choosing pivots to define buckets
…a[0] a[1] a[n-1]a[n]:

S[o*p]:

Sorted S[o*p]:

Pick o*p samples from a[n] 

Pivot[p-1]:

Evenly choose p-1 pivots

2.9 2.5 0.3 4.9 0.9 3.7 2.1 4.3 1.3 1.6 4.0 3.9

0.3 0.9 1.3 2.1 2.5 2.9 3.7 3.9 4.0 4.3 4.91.6

1.6 2.9 4.0

1.6 ≤ a[j] < 
2.9

2.9 ≤ a[j] < 
4.0 4.0 ≤ a[j]a[j] < 1.6

Define p 
buckets:

a[n]: Input arrayS[o*p]: Sample array   o: Oversample   n = dataSize p = procs
Tip for o: our reference solution uses o = 12 * lg(n)

We are using p = 4, o = 3 for 
demonstration

Thursday, February 27, 14



CMU 15-418, Spring 2014 5

Step 2: Bucketing elements of the input array

2.6 1.5 1.6

3.9 0.4 4.5

2.3 4.4 0.3

1.9 1.0 4.9

Process 
1

Process 
2

Process 
3

Process 
0

1.5, 
0.4, 
0.3, 

1.0, …

4.5, 
4.4, 
4.9, 
…

3.9, 
…

2.6, 
1.6, 
2.3, 

1.9, …

…a[n/p]:

…a[n/p]:

…a[n/p]:

…a[n/p]:

Put all the elements into their corresponding bucket (as defined in step 1)
Note that all processes have to agree on their bucket definition

Buckets defined by pivots in step 1 Input arrays in each process’s address 
space

Thursday, February 27, 14



CMU 15-418, Spring 2014 6

Step 3: Redistributing elements

Process 1

Process 2

Process 3

Process 0

Redistribute the elements such that elements on each process are now 
separate, 
i.e., elements on process i < elements on process j

Virtual buckets from step 2 Buckets after redistribution

Thursday, February 27, 14



CMU 15-418, Spring 2014 7

Step 4: Final local sort

Process 1

Process 2

Process 3

2.6, 1.6, 2.3, 1.9, …

3.9, …

4.5, 4.4, 4.9, …

1.5, 0.4, 0.3, 1.0, … Process 0

Unsorted buckets from step 3

Process 1

Process 2

Process 3

1.6, 1.6, 1.7, 1.8, 1.8, 1.8, 
…

2.9, 2.9, 2.9, 3.0, 3.1, 3.2, 
…

4.0, 4.1, 4.3, 4.4, 4.5, 4.6, 
…

0.1, 0.2, 0.2, 0.3, 0.4, 0.4, 
… Process 0

Sorted buckets after step 4

Sequentially sort each bucket using a fast sequential sort algorithm
The distributed array is now sorted!

Thursday, February 27, 14



CMU 15-418, Spring 2014

Step 4: Final local sort
Notes for the final step:
Buckets should not overlap so 
that all elements on process i 
should be less than elements 
on process j.
Bucket size on each process 
can be different, but,
Update localSize to the bucket 
size on each process!

8

Process 1

Process 2

Process 3

Process 0
…0.1 0.2

…1.6 1.6

…2.9 2.9

…4.0 4.1

Sorted buckets from step 4

Thursday, February 27, 14



CMU 15-418, Spring 2014

Tips for parallel sort
Compile and run parallel sort

Makefile and job script

Helper functions

Useful STL functions

General tips
9

Thursday, February 27, 14



CMU 15-418, Spring 2014

Compile and run parallel sort
Compile parallelSort on a ghc machine

10

Run parallelSort on a ghc machine

Thursday, February 27, 14



CMU 15-418, Spring 2014

Compile and run parallel sort
Compile parallelSort on blacklight

11

Thursday, February 27, 14



CMU 15-418, Spring 2014

Compile and run parallel 
Submit jobs on blacklight

12

make jobs creates .job files in jobs/
<username>_<cores>.job

Submit job with qsub jobs/<username>_<procs>.job
View job status with qstat –u <username>
Delete job with qdel <jobid>

Please do delete mis-submitted/useless jobs 
quickly! Especially large ones!

Thursday, February 27, 14



CMU 15-418, Spring 2014

Makefile and job script
You may need to change makefile and job script 
to test with different parameters

13

e.g., mpirun –np 2 parallelSort –s 10000000 –d norm –p 1
e.g., mpirun –np 4 parallelSort –s 1000000 –d exp –p 5

Tips: test and debug your program with smaller data size, ghc machines 
usually have little free memory space, which may cause your program to 
segmentation fault (or you can test if your malloc/new succeeded)
Important! DO NOT run your program on blacklight!

Thursday, February 27, 14



CMU 15-418, Spring 2014

Makefile and job script

14

Makefile:
Change this line to whatever 
argument you want when make 
run

<- This generates your job files in jobs/ folder 
     as jobs/<username>_<procs>.job

Thursday, February 27, 14



CMU 15-418, Spring 2014

Makefile and job script

15

job script: jobs/example.job
<- Change this line to whatever 
argument you want blacklight to 
run

<- Important! Add this line to your 
script

Thursday, February 27, 14



CMU 15-418, Spring 2014

Helper functions

16

Helps you debug your program, can be easily turned off by 
uncommenting
        in parallelSort.h

e.g., 

e.g., 
Uniform-randomly pick samples from data and put in sample array

Thursday, February 27, 14



CMU 15-418, Spring 2014

Useful STL functions
std::sort(first, last)
e.g., 
Comments: a very decent sequential sort
std::inplace_merge(first, middle, last)
e.g., 
Comments: merge two sorted arrays between 
 (1) first to middle-1, and 
 (2) middle to last-1
std::lower_bound(first, middle, val)
e.g., 
Comments: useful to find buckets for each elements

Examples can be found in src/stlSort.cpp
References: http://www.cplusplus.com/

17

Thursday, February 27, 14

http://www.cplusplus.com/
http://www.cplusplus.com/


CMU 15-418, Spring 2014

General tips
Start early! You may have to wait days for the 
results to come back from blacklight, especially 
close to deadline.

Use small input sizes and printArr to debug 
your program.

Again, start early!

18

Thursday, February 27, 14



CMU 15-418, Spring 2014

Challenges
Choose pivots that can divide the workload 
evenly.
Experiment your code with different inputs we provided:
norm, exp, bad1
How to deal with different input patterns?
What are the inputs that can break your sampling scheme?

Thought experiment: 
What if the input array is an integer array?
What are the new challenges induced by integer array?

19

Thursday, February 27, 14


