
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2014

Lecture 16:

A More Sophisticated Snooping-Based
Multi-Processor

 CMU 15-418, Spring 2014

“The Projects”
Handsome Boy Modeling School

(So... How’s your Girl?)

Tunes

“There’s a lot about the projects I do adore.”
- Dan the Automator

 CMU 15-418, Spring 2014

Final projects / expectations
▪ Project proposals are due Friday April 4 (but you are welcome to

submit early to get feedback)
- 5-6 weeks of effort: expecting at least 2 class assignments worth of work

▪ The parallelism competition is on Friday May 10th during the
final exam slot.
- ~20-25 “finalist” projects will present to judges during this time
- Other projects will presented to staff later in the day
- Final writes are due end of day on May 10th. (no late days)

▪ Your grade is independent of the parallelism competition results
- It is based on your work, your writeup, and your presentation

▪ You are encouraged to design your own project
- Contact staff as early as possible about equipment needs
- This is a list of project ideas on the web site to help
- http://15418.courses.cs.cmu.edu/spring2014/article/12

 CMU 15-418, Spring 2014

Photo competition winner: “75% utilization”

“My work aims to capture the essential human struggle that pits ensuring good load balance
against the overheads incurred by using resources to orchestrate a computation.” - Rokhini

https://piazza.com/class/hp48cc3qet0276?cid=453#
https://piazza.com/class/hp48cc3qet0276?cid=453#
https://piazza.com/class/hp48cc3qet0276?cid=453#
https://piazza.com/class/hp48cc3qet0276?cid=453#

 CMU 15-418, Spring 2014

Last time we implemented a very simple cache-coherent multi-
processor using an atomic bus as an interconnect

Cache

Processor

Atomic Bus

Cache

Processor

Memory

 CMU 15-418, Spring 2014

Key issues
We addressed the issue of contention for
access to cache tags by duplicating tags. Tags

Data

State

to processor

to bus

“Snoop” controller

“processor-side” controller

Tags State

Address
Data

Shared
Dirty
Snoop-valid

We described how snoop results
can be collectively reported to a
cache via shared, dirty, and valid
lines on the bus.

 CMU 15-418, Spring 2014

Key issues
We addressed correctness issues that
arise from the use of a write-back buffer
by checking both the cache tags and the
write-back buffer when snooping.

(and also added the ability to cancel
pending bus transfer requests).

 CMU 15-418, Spring 2014

Key issues

We talked about how coherence protocol state
transitions are not really atomic operations in a
real machine (even though the bus itself it
atomic), leading to possible race conditions.

We talked about ensuring write serialization:
processor is held up by the cache until the “I
want exclusive access” transaction appears on
the bus (this is when the write “commits”).

 CMU 15-418, Spring 2014

We discussed deadlock, livelock, and starvation

Situation 1:
P1 has a modified copy of cache line X
P1 is waiting for the bus to issue BusRdX on cache line Y
BusRd for X appears on bus while P1 is waiting

FETCH DEADLOCK!
To avoid deadlock, P1 must be able to service incoming
transactions while waiting to issue its own requests

 CMU 15-418, Spring 2014

Required conditions for deadlock
1. Mutual exclusion: one processor can hold a given resource at once
2. Hold and wait: processor must hold the resource while waiting for other

resources needed to complete an operation
3. No preemption: processors don’t give up resources until operation they

wish to perform is complete
4. Circular wait: waiting processors have mutual dependencies (a cycle exists

in the resource dependency graph)

B

A

Work queue (full)

Work queue (full)

 CMU 15-418, Spring 2014

Livelock
Situation 2:
Two processors simultaneously write to cache line X (in S state)
P1 acquires bus access (“wins bus”), issues BusRdX
P2 invalidates its copy of the line in response to P1’s BusRdX
Before P1 performs the write (updates block), P2 acquires bus
and issues BusRdX
P1 invalidates in response to P2’s BusRdX

LIVELOCK!
To avoid livelock, write that obtains exclusive ownership must be
allowed to complete before exclusive ownership is relinquished.

 CMU 15-418, Spring 2014

Today’s topic

Today we will build the system around non-atomic
bus transactions.

 CMU 15-418, Spring 2014

What you should know
▪ What is the major performance issue with atomic bus transactions that

motivates moving to a more complex non-atomic system?

▪ Who should know the main components of a split-transaction bus, and how
transactions are split into requests and responses

▪ How deadlock and livelock might occur in both atomic bus and non-atomic
bus-based systems (what are possible solutions for avoiding it?)

▪ The role of queues in a parallel system (today is yet another example)

 CMU 15-418, Spring 2014

Transaction on an atomic bus
1. Client is granted bus access (result of arbitration)
2. Client places command on bus (may also place data on bus)

3. Response to command by another bus client placed on bus
4. Next client obtains bus access (arbitration)

Problem: bus is idle while response is pending
(decreases effective bus bandwidth)

This is bad, because the interconnect is a limited,
shared resource in a multi-processor system.
(So it is important to use it as efficiently as possible)

 CMU 15-418, Spring 2014

Split-transaction bus
Bus transactions are split into two transactions: a request and a
response

Other transactions can intervene.

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

Consider:
Read miss to A by P1
Bus upgrade of B by P2

P1 gains access to bus
P1 sends BusRd command
[memory starts fetching data]

P2 gains access to bus
P2 sends BusUpg command
Memory gains access to bus
Memory places A on bus

 CMU 15-418, Spring 2014

New issues arise due to split transactions

2. How to handle conflicting requests on bus?
Consider:
- P1 has outstanding request for line A
- Before response to P1 occurs, P2 makes request for line A

3. Flow control: how many requests can be outstanding at a time,
and what should be done when buffers fill up?

4. When are snoop results reported? During the request? or during
the response?

1. How to match requests with responses?

 CMU 15-418, Spring 2014

A basic design

▪ Up to eight outstanding requests at a time (system wide)

▪ Responses need not occur in the same order as requests
- But request order establishes the total order for the system

▪ Flow control via negative acknowledgements (NACKs)
- When a buffer is full, client can NACK a transaction, causing a retry

 CMU 15-418, Spring 2014

Initiating a request
Can think of a split-transaction bus as two separate buses:
a request bus and a response bus.

Request bus:
cmd + address

Response bus:
data

Step 1: Requestor asks for request bus access
Step 2: Bus arbiter grants access, assigns transaction a tag
Step 3: Requestor places command + address on the request bus

Requestor Addr

P0 0xbeef

State

Request Table
(assume a copy of this table is maintained

by each bus client: e.g., cache)

Transaction tag is
index into table

256 bits

3 bits
Response tag

 CMU 15-418, Spring 2014

Read miss: cycle-by-cycle bus behavior (phase 1)

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant

Request arbitration: cache controllers present request for address to bus
(many caches may be doing so in the same cycle)

Request resolution: address bus arbiter grants access to one of the requestors
Request table entry allocated for request (see previous slide)
Special arbitration lines indicate tag assigned to request

Addr

Bus “winner” places command/address on the bus

Caches perform snoop: look up tags, update cache state, etc.
Memory operation commits here!
(NO BUS TRAFFIC)

Addr
Ack

Caches acknowledge this snoop result is ready
(or signal they could not complete snoop in time here (e.g., raise inhibit wire)

 CMU 15-418, Spring 2014

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant Addr Addr

Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus
(Data Arbitration)

(Data)

Tag
check

Data response arbitration: responder presents intent to respond
to request with tag T
(many caches --or memory-- may be doing so in the same cycle)

Original requestor signals readiness to receive response
(or lack thereof: requestor may be busy at this time)

Grant

Data bus arbiter grants one responder bus access

Read miss: cycle-by-cycle bus behavior (phase 2)

 CMU 15-418, Spring 2014

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant Addr Addr

Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus
(Data Arbitration)

(Data)

Tag
checkGrant

Read miss: cycle-by-cycle bus behavior (phase 3)

Data DataData Data

Responder places response data on data bus
Caches present snoop result for request with the data
Request table entry is freed
Here: assume 128 byte cache lines → 4 cycles on 256 bit bus

 CMU 15-418, Spring 2014

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant Addr Addr

Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus
(Data Arbitration)

(Data)

Tag
checkGrant

Pipelined transactions

Data DataData Data

Addr
req Grant Addr Addr

Ack

Data
req

Tag
checkGrant

Data Data ...

Note: write backs and BusUpg transactions do not have a response component
(write backs acquire access to both request address bus and data bus as part of “request” phase)

= memory transaction 1

= memory transaction 2

 CMU 15-418, Spring 2014

Request Bus
(Addr/cmd)

Response Bus
(Data Arbitration)

(Data)

Pipelined transactions
Clocks

= memory transaction 1

= memory transaction 2

...

= memory transaction 3

= memory transaction 4

 CMU 15-418, Spring 2014

Key issues to resolve
▪ Conflicting requests

- Avoid conflicting requests by disallowing them
- Each cache has a copy of the request table
- Simple policy: caches do not make requests that conflict with requests

in the request table

▪ Flow control:
- Caches/memory have buffers for receiving data off the bus
- If the buffer fills, client NACKs relevant requests or responses

(NACK = negative acknowledgement)
- Triggers a later retry

 CMU 15-418, Spring 2014

Situation 1: P1 read miss to X, write transaction
involving X is outstanding on bus

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

read	
 XRequestor Addr

P2 X

State

P1 Request Table

Op: BusRdX

If there is a conflicting outstanding request (as determined by checking the request
table), cache must hold request until conflict clears

 CMU 15-418, Spring 2014

Situation 2: P1 read miss to X, read transaction
involving X is outstanding on bus

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

read	
 XRequestor Addr

P2 X

State

P1 Request Table

Op: BusRd

If outstanding request is a read: there is no conflict. No need to make a new bus
request, just listen for the response to the outstanding one.

, share

 CMU 15-418, Spring 2014

Multi-level cache hierarchies

 CMU 15-418, Spring 2014

Why do we have queues?

A B

To accommodate variable (unpredictable) rates of production and consumption.
As long as A and B, on average, produce and consume at the same rate, both
workers can run at full rate.

With queue of
size 2: A and B
never stall

A

B

1 2 3 4

1

1

2

2 1

3

1

4

5

1

6

5 6

2 10 0 0 Size of queue
when A completes
a piece of work (or
B begins work)

0

A

B

1 2 3 4

1 2 3 4

5 6

5 6

No queue:
stalls exist

time

 CMU 15-418, Spring 2014

Consider fetch deadlock problem

Assume one outstanding memory request per processor.
Consider fetch deadlock problem: cache must be able to service requests while
waiting on response to its own request (hierarchies increase response delay)

 CMU 15-418, Spring 2014

Deadlock due to full queues

L1 Cache

L2 Cache

to processor

to bus

L1→L2 queue L2→L1 queue

Incoming read request (due to another cache) **

Outgoing read request (initiated by this processor)

Both requests generate responses that require
space in the other queue (circular dependency)

** will only occur if L1 is write back

Assume buffers are sized so that max queue size is
one message.

 CMU 15-418, Spring 2014

Multi-level cache hierarchies

Assume one outstanding memory request per processor.
Consider fetch deadlock problem: cache must be able to service requests while waiting on
response to its own request (hierarchies increase response delay)
Sizing all buffers to accommodate the maximum number of outstanding requests on bus is one
solution to avoiding deadlock. But an expensive one!

 CMU 15-418, Spring 2014

Avoiding buffer deadlock with separate
request/response queues

L1 Cache

L2 Cache

to processor

to bus

L1→L2
request queue

L2→L1
request queue

System classifies all transactions as requests or
responses

Key insight: responses can be completed without
generating further transactions!

Requests INCREASE queue length
But responses REDUCE queue length

While stalled attempting to send a request, cache
must be able to service responses.

Responses will make progress (they generate no
new work so there’s no circular dependence),
eventually freeing up resources for requests

L1→L2
response queue

L2→L1
response queue

 CMU 15-418, Spring 2014

int	
 x	
 =	
 10;	
 	
 	
 	
 	
 	
 //	
 assume	
 this	
 is	
 a	
 write	
 to	
 memory	
 (value	
 not	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 stored	
 in	
 register)

Putting it all together

Class exercise: describe everything that might occur during the
execution of this statement

 CMU 15-418, Spring 2014

int	
 x	
 =	
 10;
Virtual address to physical address conversion (TLB lookup)
TLB miss
TLB update (might involve OS)
OS may need to swap in page to get the appropriate page table (load from disk to physical address)
Cache lookup
Line not in cache (need to generate BusRdX)
Arbitrate for bus
Win bus, place address, command on bus
Another cache or memory decides it must respond (assume memory)
Memory request sent to memory controller
Memory controller is itself a scheduler
Memory checks active row in row buffer. May need to activate new row.
Values read from row buffer
Memory arbitrates for data bus
Memory wins bus
Memory puts data on bus
Cache grabs data, updates cache line and tags, moves line into Exclusive state
Processor is notified data exists
Instruction proceeds

Class exercise: describe everything that might
occur during the execution of this statement

