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“The Projects”
Handsome Boy Modeling School

(So... How’s your Girl?)

Tunes

“There’s a lot about the projects I do adore.”
- Dan the Automator
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Final projects / expectations
▪ Project proposals are due Friday April 4 (but you are welcome to 

submit early to get feedback)
- 5-6 weeks of effort: expecting at least 2 class assignments worth of work

▪ The parallelism competition is on Friday May 10th during the 
final exam slot.
- ~20-25 “finalist” projects will present to judges during this time
- Other projects will presented to staff later in the day
- Final writes are due end of day on May 10th.  (no late days) 

▪ Your grade is independent of the parallelism competition results
- It is based on your work, your writeup, and your presentation

▪ You are encouraged to design your own project
- Contact staff as early as possible about equipment needs 
- This is a list of project ideas on the web site to help
- http://15418.courses.cs.cmu.edu/spring2014/article/12
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Photo competition winner: “75% utilization”

“My work aims to capture the essential human struggle that pits ensuring good load balance 
against the overheads incurred by using resources to orchestrate a computation.” - Rokhini

https://piazza.com/class/hp48cc3qet0276?cid=453#
https://piazza.com/class/hp48cc3qet0276?cid=453#
https://piazza.com/class/hp48cc3qet0276?cid=453#
https://piazza.com/class/hp48cc3qet0276?cid=453#
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Last time we implemented a very simple cache-coherent multi-
processor using an atomic bus as an interconnect

Cache

Processor

Atomic Bus

Cache

Processor

Memory
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Key issues
We addressed the issue of contention for 
access to cache tags by duplicating tags. Tags

Data

State

to processor

to bus

“Snoop” controller

“processor-side” controller

Tags State

Address
Data

Shared
Dirty
Snoop-valid

We described how snoop results 
can be collectively reported to a 
cache via shared, dirty, and valid 
lines on the bus.  
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Key issues
We addressed correctness issues that 
arise from the use of a write-back buffer 
by checking both the cache tags and the 
write-back buffer when snooping.

(and also added the ability to cancel 
pending bus transfer requests).
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Key issues

We talked about how coherence protocol state 
transitions are not really atomic operations in a 
real machine (even though the bus itself it 
atomic), leading to possible race conditions.  

We talked about ensuring write serialization: 
processor is held up by the cache until the “I 
want exclusive access” transaction appears on 
the bus (this is when the write “commits”).
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We discussed deadlock, livelock, and starvation 

Situation 1:
P1 has a modified copy of cache line X
P1 is waiting for the bus to issue BusRdX on cache line Y
BusRd for X appears on bus while P1 is waiting

FETCH DEADLOCK!
To avoid deadlock, P1 must be able to service incoming 
transactions while waiting to issue its own requests 
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Required conditions for deadlock
1. Mutual exclusion: one processor can hold a given resource at once
2. Hold and wait: processor must hold the resource while waiting for other 

resources needed to complete an operation
3. No preemption: processors don’t give up resources until operation they 

wish to perform is complete
4. Circular wait:  waiting processors have mutual dependencies (a cycle exists 

in the resource dependency graph)

B

A

Work queue (full)

Work queue (full)
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Livelock
Situation 2:
Two processors simultaneously write to cache line X (in S state)
P1 acquires bus access (“wins bus”), issues BusRdX
P2 invalidates its copy of the line in response to P1’s BusRdX
Before P1 performs the write (updates block), P2 acquires bus 
and issues BusRdX
P1 invalidates in response to P2’s BusRdX

LIVELOCK!
To avoid livelock, write that obtains exclusive ownership must be 
allowed to complete before exclusive ownership is relinquished.
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Today’s topic

Today we will build the system around non-atomic 
bus transactions.
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What you should know
▪ What is the major performance issue with atomic bus transactions that 

motivates moving to a more complex non-atomic system?

▪ Who should know the main components of a split-transaction bus, and how 
transactions are split into requests and responses

▪ How deadlock and livelock might occur in both atomic bus and non-atomic 
bus-based systems (what are possible solutions for avoiding it?) 

▪ The role of queues in a parallel system (today is yet another example)
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Transaction on an atomic bus
1. Client is granted bus access (result of arbitration)
2. Client places command on bus (may also place data on bus)

3. Response to command by another bus client placed on bus 
4. Next client obtains bus access (arbitration)

Problem: bus is idle while response is pending
(decreases effective bus bandwidth)

This is bad, because the interconnect is a limited, 
shared resource in a multi-processor system.
(So it is important to use it as efficiently as possible)
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Split-transaction bus
Bus transactions are split into two transactions: a request and a 
response

Other transactions can intervene.

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

Consider:
Read miss to A by P1
Bus upgrade of B by P2 

P1 gains access to bus
P1 sends BusRd command 
[memory starts fetching data]

P2 gains access to bus
P2 sends BusUpg command
Memory gains access to bus
Memory places A on bus
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New issues arise due to split transactions

2. How to handle conflicting requests on bus?
Consider:
- P1 has outstanding request for line A
- Before response to P1 occurs, P2 makes request for line A

3. Flow control: how many requests can be outstanding at a time, 
and what should be done when buffers fill up?

4. When are snoop results reported? During the request? or during 
the response?

1. How to match requests with responses?
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A basic design

▪ Up to eight outstanding requests at a time (system wide)

▪ Responses need not occur in the same order as requests
- But request order establishes the total order for the system

▪ Flow control via negative acknowledgements (NACKs)
- When a buffer is full, client can NACK a transaction, causing a retry
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Initiating a request
Can think of a split-transaction bus as two separate buses:
a request bus and a response bus.

Request bus:
cmd + address

Response bus:
data

Step 1: Requestor asks for request bus access
Step 2: Bus arbiter grants access, assigns transaction a tag
Step 3: Requestor places command + address on the request bus

Requestor Addr

P0 0xbeef

State

Request Table
(assume a copy of this table is maintained 

by each bus client: e.g., cache)

Transaction tag is 
index into table

256 bits

3 bits
Response tag
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Read miss: cycle-by-cycle bus behavior (phase 1)

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant

Request arbitration: cache controllers present request for address to bus
(many caches may be doing so in the same cycle)

Request resolution: address bus arbiter grants access to one of the requestors
Request table entry allocated for request (see previous slide)
Special arbitration lines indicate tag assigned to request

Addr

Bus “winner” places command/address on the bus

Caches perform snoop: look up tags, update cache state, etc.
Memory operation commits here!
(NO BUS TRAFFIC)

Addr
Ack

Caches acknowledge this snoop result is ready
(or signal they could not complete snoop in time here (e.g., raise inhibit wire)
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ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant Addr Addr

Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus
(Data Arbitration)

(Data)

Tag
check

Data response arbitration: responder presents intent to respond 
to request with tag T
(many caches --or memory-- may be doing so in the same cycle)

Original requestor signals readiness to receive response 
(or lack thereof: requestor may be busy at this time)

Grant

Data bus arbiter grants one responder bus access 

Read miss: cycle-by-cycle bus behavior (phase 2)
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ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant Addr Addr

Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus
(Data Arbitration)

(Data)

Tag
checkGrant

Read miss: cycle-by-cycle bus behavior (phase 3)

Data DataData Data

Responder places response data on data bus
Caches present snoop result for request with the data
Request table entry is freed
Here: assume 128 byte cache lines → 4 cycles on 256 bit bus 
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ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant Addr Addr

Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus
(Data Arbitration)

(Data)

Tag
checkGrant

Pipelined transactions

Data DataData Data

Addr
req Grant Addr Addr

Ack

Data
req

Tag
checkGrant

Data Data ...

Note: write backs and BusUpg transactions do not have a response component
(write backs acquire access to both request address bus and data bus as part of “request” phase)

= memory transaction 1

= memory transaction 2
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Request Bus
(Addr/cmd)

Response Bus
(Data Arbitration)

(Data)

Pipelined transactions
Clocks

= memory transaction 1

= memory transaction 2

...

= memory transaction 3

= memory transaction 4
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Key issues to resolve
▪ Conflicting requests

- Avoid conflicting requests by disallowing them
- Each cache has a copy of the request table
- Simple policy: caches do not make requests that conflict with requests 

in the request table

▪ Flow control:
- Caches/memory have buffers for receiving data off the bus
- If the buffer fills, client NACKs relevant requests or responses

(NACK = negative acknowledgement)
- Triggers a later retry
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Situation 1: P1 read miss to X, write transaction 
involving X is outstanding on bus

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

read	
  XRequestor Addr

P2 X

State

P1 Request Table

Op: BusRdX

If there is a conflicting outstanding request (as determined by checking the request 
table), cache must hold request until conflict clears
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Situation 2: P1 read miss to X, read transaction 
involving X is outstanding on bus

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

read	
  XRequestor Addr

P2 X

State

P1 Request Table

Op: BusRd

If outstanding request is a read: there is no conflict.  No need to make a new bus 
request, just listen for the response to the outstanding one.

,   share
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Multi-level cache hierarchies
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Why do we have queues?

A B

To accommodate variable (unpredictable) rates of production and consumption.
As long as A and B, on average, produce and consume at the same rate, both 
workers can run at full rate.

With queue of 
size 2: A and B 
never stall 

A

B

1 2 3 4

1

1

2

2 1

3

1

4

5

1

6

5 6

2 10 0 0 Size of queue 
when A completes 
a piece of work (or 
B begins work) 

0

A

B

1 2 3 4

1 2 3 4

5 6

5 6

No queue: 
stalls exist

time
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Consider fetch deadlock problem 

Assume one outstanding memory request per processor.
Consider fetch deadlock problem: cache must be able to service requests while 
waiting on response to its own request (hierarchies increase response delay)
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Deadlock due to full queues

L1 Cache

L2 Cache

to processor

to bus

L1→L2 queue L2→L1 queue

Incoming read request (due to another cache) **

Outgoing read request (initiated by this processor)

Both requests generate responses that require 
space in the other queue (circular dependency)

** will only occur if L1 is write back

Assume buffers are sized so that max queue size is 
one message. 
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Multi-level cache hierarchies

Assume one outstanding memory request per processor.
Consider fetch deadlock problem: cache must be able to service requests while waiting on 
response to its own request (hierarchies increase response delay)
Sizing all buffers to accommodate the maximum number of outstanding requests on bus is one 
solution to avoiding deadlock. But an expensive one!
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Avoiding buffer deadlock with separate 
request/response queues

L1 Cache

L2 Cache

to processor

to bus

L1→L2
request queue

L2→L1
request queue

System classifies all transactions as requests or 
responses

Key insight: responses can be completed without 
generating further transactions!

Requests INCREASE queue length
But responses REDUCE queue length

While stalled attempting to send a request, cache 
must be able to service responses.

Responses will make progress (they generate no 
new work so there’s no circular dependence), 
eventually freeing up resources for requests

L1→L2
response queue

L2→L1
response queue
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int	
  x	
  =	
  10;	
  	
  	
  	
  	
  	
  //	
  assume	
  this	
  is	
  a	
  write	
  to	
  memory	
  (value	
  not	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  stored	
  in	
  register)

Putting it all together

Class exercise: describe everything that might occur during the 
execution of this statement
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int	
  x	
  =	
  10;
Virtual address to physical address conversion (TLB lookup)
TLB miss
TLB update (might involve OS)
OS may need to swap in page to get the appropriate page table (load from disk to physical address)
Cache lookup
Line not in cache (need to generate BusRdX)
Arbitrate for bus
Win bus, place address, command on bus
Another cache or memory decides it must respond (assume memory)
Memory request sent to memory controller
Memory controller is itself a scheduler
Memory checks active row in row buffer.  May need to activate new row.
Values read from row buffer
Memory arbitrates for data bus
Memory wins bus
Memory puts data on bus
Cache grabs data, updates cache line and tags, moves line into Exclusive state
Processor is notified data exists
Instruction proceeds

Class exercise: describe everything that might 
occur during the execution of this statement


