Domain-Sbeciﬁc
Programming Systems

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2014

Slide acknowledgments:
Pat Hanrahan, Zach Devito (Stanford University)
Jonathan Ragan-Kelley (MIT)

Celia Cruz

La Vida es un Carnival

“It was after a trip to Pittsburgh where we really decided this
salsa thing was going to go big.”

-Ursula

CMU 15-418, Spring 2014

Course themes:

Designing computer systems that scale
(running faster given more resources)

Designing computer systems that are efficient
(running faster under constraints on resources)

Techniques discussed:
Exploiting parallelism in applications
Exploiting locality in applications
Leveraging HW specialization

CMU 15-418, Spring 2014

Hardware trend: specialization of execution

B Multiple forms of parallelism

- SIMD/vector processing Fine-granularity parallelism: perform
— > samelogicon different data

Multi-threading Mitigate inefficiencies (stalls) caused by
unpredictable data access

- Multi-core
- Multiple node Varying scales of coarse-granularity
- Multiple server parallelism

m Heterogeneous execution capability

- Programmable, latency-centric (e.g., “CPU-like” cores)
- Programmable, throughput-optimized (e.g., “GPU-like” cores)
- Fixed-function, application-speciﬁc (e.g., image/video/audio processing)

Motivation for parallelism and specialization: maximize compute capability
given constraints on chip area, power.
Result: amazingly high compute capability in a wide range of devices!

CMU 15-418, Spring 2014

Claim: most software uses modern hardware
resources inefficiently

m (Consider a piece of sequential C code

- Let’s consider the performance of this baseline performance)

® Well-written sequential C code: ~ 5-10x faster

B Assembly language program: another small constant factor faster
® Java, Python, PHP, etc. ??

Credit: Pat Hanrahan CMU 15-418, Spring 2014

Code performance relative to C(single core)
!153

80 M
. . Mandelbrot
S |70
=]
J
g
S | 60
=
b
_-; 50
T,
=
o |40
o
t l
-7
S
S 30
£
=)
J
= | 20
©
S
= |10
2
P SO— W
Java Scala Gt Go Lua Python Ruby

Source: The Computer Language Benchmarks Game: http://shootout.alioth.debian.org
CMU 15-418, Spring 2014

http://shootout.alioth.debian.org

Even good C code is inefficient

Recall Assignment 1's Mandelbrot program
For execution on this laptop: quad-core, Intel Core i7, AVX instructions...

Single core, with AVX vector instructions: 5.8x speedup over Cimplementation

Multi-core + hyper-threading + AVX instructions: 21.7x speedup

Conclusion: basic Cimplementation leaves a lot of performance on the table

CMU 15-418, Spring 2014

Making efficient use of modern machines is challenging

(proof by assignments 2, 3, and 4)

In our assignments you only programmed homogeneous parallel computers.
And parallelism in that context was not easy.

Assignment 2: GPU cores only

Assignment 3: Blacklight (multiple CPUs with relatively fast interconnect)

Assignment 4: multiple parallel machines

CMU 15-418, Spring 2014

Power-efficient heterogeneous platforms

Integrated
CPU + GPU

GPU:

throughput cores + fixed-function

SIMD
Exec
oo | [oo | e

Tessellate

Tessellate

SIMD SIMD SIMD

Clip/Cull

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Rasterize
Exec Exec Exec
Clip/Cull
ENIENIEE IR

Zbuffer/ Zbuffer/

Zbuffer /
Blend

Zbuffer /
Blend

Blend Blend

SIMD SIMD SIMD
o —
Blend Blend

= e

Scheduler / Work Distributor

(PU+data-parallel accelerator

Ultra HD Capture

Qualcomm Snapdragon SoC and Playback
800 PROCESSOR DTS-HO and Dolby

Digital Plus audio
Expanded Gestures

Krait 400 CPU
features 28HPm process technology
supenor

2GHz+ performance

SSMP with dual ISP

Support for up
Adreno 330 for to 25602048 display
advanced graphics Miracast 1080p

HD support
Hexagon QDSP6
for ‘l""" oW ":‘J‘" Zat GNSS with
applications and custom support for three

programmability GPS constellations

Integrated LTE*, 802.11ac’ USB 3.0
and BT 4.0 offers broad array
of high speed connectivity

Mobile system-on-a-chip:

CPU+GPU+media processing
CMU 15-418, Spring 2014

Hardware diversity is a huge challenge

m Machines with very different performance characteristics

m Even worse: different technologies and performance
characteristics within the same machine at different scales

- Within a core: SIMD, multi-threading: fine-granularity sync and
communication

- Across cores: coherent shared memory via fast on-chip network
= Hybrid CPU+GPU multi-core: incoherent (potentially) shared memory
- Across racks: distributed memory, multi-stage network

CMU 15-418, Spring 2014

Variety of programming models to abstract HW

m Machines with very different performance characteristics

m Worse: different technologies and performance characteristics
within the same machine at different scales

= Within a core: SIMD, multi-threading: fine grained sync and comm.
- Abstractions: SPMD programming (ISPC, Cuda, OpenCL)

- Across cores: coherent shared memory via fast on-chip network
- Abstractions: OpenMP shared address space, Cilk, TBB

= Hybrid CPU+GPU multi-core: incoherent (potentially) shared memory
- Abstractions: OpenCL

- Across racks: distributed memory, multi-stage network

- Abstractions: message passing (MPI, Go channels, Charm++)

Credit: Pat Hanrahan
CMU 15-418, Spring 2014

Huge challenge

m Machines with very different performance characteristics

m Worse: different performance characteristics within the same
machine at different scales

m To be efficient, software must be optimized for HW characteristics
- Difficult even in the case of one level of one machine **

- Combinatorial complexity of optimizations when considering a
complex machine, or different machines

- Loss of software portability

** Little success developing automatic tools to identify efficient HW mapping for arbitrary, complex applications

Credit: Pat Hanrahan
CMU 15-418, Spring 2014

Open computer science question:

How do we enable programmers to write software
that efficiently uses these parallel machines?

CMU 15-418, Spring 2014

The [magical] ideal parallel programming language

High Performance
(software is scalable and efficient)

Productivity Completeness
(ease of development) (applicable to most problems we
want to write a program for)

Credit: Pat Hanrahan
CMU 15-418, Spring 2014

Successful programming languages

Here: definition of success = widely used

High Performance
(software is scalable and efficient)

C/C++

Productivity Completeness
(ease of development) (| (applicable to most problems we
~ want to write a program for)

A

@ python avascript

Credit: Pat Hanrahan
CMU 15-418, Spring 2014

Growing interest in domain-specific programming systems
To realize high performance and productivity: willing to sacrifice completeness

High Performance
(software is scalable and efficient)

¢ Domain-specific *

7 W

v+ languagesand ° P

\ Pprogramming ¢ C/ C++

' frameworks «
© a R
Productivity _ Completeness
(ease of development) (OElaC | (applicable to most problems we
fC€ 1L’ wantto write a program for)
@ python ateiyeemn

Credit: Pat Hanrahan
CMU 15-418, Spring 2014

Domain-specific programming systems
B Main idea: raise level of abstraction

m |ntroduce high-level programming primitives specific to an
application domain

= Productive: intuitive to use, portable across machines, primitives correspond to
behaviors frequently used to solve problems in targeted domain

- Performant: system uses domain knowledge to provide efficient, optimized
implementation(s)

- Given a machine: system knows what algorithms to use, parallelization
strategies to employ for this domain

- Optimization goes beyond efficient mapping of software to hardware! The
hardware platform itself can be optimized to the abstractions as well

m (ost: loss of generality/completeness

CMU 15-418, Spring 2014

Two domain-specific programming examples

1. Liszt: scientific computing

2. Halide: image processing

(Bonus slides contain a third example: OpenGl)

CMU 15-418, Spring 2014

Example 1:
Lizst: a language for solving PDE’s on meshes

[DeVito et al. Supercomputing 11, SciDac"11]

Slide credit for this section of lecture:
Pat Hanrahan and Zach Devito (Stanford)

http://liszt.stanford.edu/
CMU 15-418, Spring 2014

http://liszt.stanford.edu

Fields on unstructured meshes

Coloring key:
val = FieldWithLabel] ,Float3](“position™)
val = FieldWithConst][,Float](0.0f)
val = FieldWithConst] ,Float](0.0f)
val = FieldWithConst[,Float](0.0f) E

H
C

Notes:
Fields are a higher-kinded type
(special function that maps a type to a new type)

Explicit algorithm: heat conduction on grid

Coloring key:

var i = 0;
while (i1 < 1000) {

((mesh)) = 0.f;
((mesh)) = 0.F;
(e <- ()) A
val = (e)
val = (e)
val dP = (vl) - (v2)
val dT = (vl) -

val step = 1.0f/(length(dP))
(vl) += dT*step
(v2) -= dT*step
(vl) += step
(v2) += step

Liszt’s topological operators

2

®o—>0

BoundarySetl[ME <: MeshElement](name :

: Set[Vertex]
: Set[Cell]
: Set[Edge]
: Set[Face]

vertices(e : Mesh)
cells(e : Mesh)
edges(e : Mesh)
faces(e : Mesh)

Vertex) : Set[Vertex]
: Vertex) : Set[Cell]
: Vertex) : Set[Edge]
: Vertex) : Set[Face]

vertices(e :
cells(e
edges (e
faces(e

: Set[Vertex]

: Set[Face]
: Set[Cell]
: Vertex

vertices(e : Edge)
facesCCW* (e : Edge)
cells(e : Edge)
head(e : Edge)
tail(e : Edge) : Vertex
flip*(e : Edge) : Edge

towards’ (e : Edge, t : Vertex) : Edge

String)

: Set[ME]

cells(e : Cell) : Set[Cell]
vertices(e : Cell) : Set[Vertex]
faces(e : Cell) : Set[Face]
edges(e : Cell) : Set[Edge]

: Set[Cell]

Face) : Set[Edge]
Face) : Set[Vertex]

Face) : Cell
outside’(e : Face) : Cell
flip4(e : Face) : Face
towards’(e : Face,t :

cells(e : Face)

edgesCCW2 (e :
vertices(e :

inside3(e :

Cell) : Face

Liszt programming

m Liszt program describes operations on fields of an abstract mesh
representation

m Application specifies type of mesh (reqular, irregular) and its topology
m Mesh representation is chosen by Liszt (not by the programmer)
- Based on mesh type, program behavior, and machine

CMU 15-418, Spring 2014

Compiling to parallel computers

Recall challenges you have faced in your assignments
1. Identify parallelism

2. ldentify data locality
3. Reason about required synchronization

CMU 15-418, Spring 2014

Key: determining program dependencies

1. Identify parallelism
- Absence of dependencies implies code can be executed in parallel

2. ldentify data locality

- Partition data based on dependencies (localize dependent
computations for faster synchronization)

3. Reason about required synchronization

- Synchronization is needed to respect existing dependencies (must wait
until the values a computation depends on are known)

In general programs, compilers are unable to infer dependencies at global
scale:a[i] = b[f(i)] (mustexecute f(i) to know dependency)

CMU 15-418, Spring 2014

Liszt is constrained to allow dependency analysis

o ll J ”. /| M /4 — ° ° °
|nfe Iri ng stenci IS . stencil” = mesh elemfents access.ed in .an iteration of loop
= dependencies for the iteration

Statically analyze code to find stencil of each top-level for loop

- Extract nested mesh element reads
- Extract field operations

for (e <- ()) A
val = (e)
val = (e)
val dP = (vl) - (v2)
val dT = (vl) -

val step = 1.0f/(length(dP))

Edge 6's read stencil is Fand D

(v2)

(vl) += dT*step

e in

) += step

= dT* step - edges(mesh)
(vl) += step ‘// \\\\
(

} head(e)

vertices(mesh)

Read/Write Flux
Read/Write JacobiStep
Write Temperature

tail(e)

Read Position,Temperature Read Position, Temperature

Write Flux, JacobiStep

Write Flux, JacobiStep

Restrict language for dependency analysis

“Language Restrictions”

- Mesh elements only accessed through built-in topological functions:

(mesh),

- Single static assignment:

val = (e)
- Datain fields can only be accessed using mesh elements:
\"/

— No recursive functions

Allows compiler to automatically infer stencil

Portable parallelism: use dependencies to implement
different parallel execution strategies

Partitioning 13
- Assign partition to each computational unit N4
o
- Use ghost elements to coordinate cross-boundary 2 X5 /\ .
communication. '\/ ° \ 1
10 3| 7 17
4 8

Coloring

— Calculate interference between work items on domain

- Schedule work-items into non-interfering batches

Schedule
Batch 1 Batch 2 Batch 3 Batch 4

TN

113(8|11|0 (5|7 |10(4 |9 |2

Distribution memory implementation of Llszt
Mesh + Stencil -> Graph -> Partition b

for(f <- faces(mesh)) { -
rhoOutside(f) := ;

calc flux(f,rho(outside(f)))
+ calc_flux(f,rho(inside(f)))

Initial Partition
(by ParMETIS)

Consider distributed memory implementation
Store region of mesh on each node in a cluster
(ParMETIS is a tool to partition meshes)

Each processor also needs data for neighboring
cells to perform computation (“ghost cells”)

GPU implementation: parallel reductions

Previous example, one region of mesh per processor (or node in MPI cluster)
On GPU, natural parallelization is one edge per CUDA thread

Threads
o1 2|3 |4 |5|o6 |7 |8] 9 |10]11
RS W 2
A B |C|D E F | G H
Memory
for (e <- ()) |
. Different edges share a vertex: requires
(vi) += dT*step atomic update of per-vertex field data
(v2) -= dT*step

GPU implementation: conflict graph
Threads

0

11

A

112 |3|4|5|6|7]|8]|9]10
N VeV s
B|C |D E F | G

H

I\/Iemory 1

|dentify mesh edges with colliding writes

1 O 3 10 (lines in graph indicate presence of collision)
W \ E// Can simply run program once to get this
| 4 6 0 information.
2 (results valid for subsequent executions
/ \ provided mesh does not change)

GPU implementation: conflict graph
Threads

0

11

A

112 (13 (4|5 |67 8|9 |10
N s e
B | C|D E F | G

H

MemOry 1

“Color” nodes in graph such that no connected

O 8 10 nodes have the same color
W \ B// Can execute on GPU in parallel, without
4 6 0 atomic operations, by running all nodes with
2 [the same color in a single CUDA launch.

MPI performance of Lizst program

256 nodes, 8 cores per node

Euler Navier- Stokes
1024 1024
23M cell mesh 21M cell mesh
(o
=)
3
o 512 512 +
(o
)
256 | 256 |
128 | Liszt 128 | Liszt
C++ C++
32 l l l 32 l l l
32 128 256 512 1024 32 128 256 512 1024
Cores Cores

Important: performance portability!
Same Liszt program also runs with high efficiency on GPU (results not shown here).

But uses a different alqorithm! (graph coloring)

Liszt summary

m Productivity:

- Abstract representation of mesh: vertices, edges, faces, fields
- Intuitive topological operators

m Portability

- Same code runs on cluster of CPUs (MPI runtime) and GPUs

m High-Performance

- Language constrained to allow compiler to track dependencies

- Used for locality-aware partitioning in distributed memory implementation

- Used for graph coloring in GPU implementation

- Completely different parallelization strategies for different platforms

- Underlying mesh representation can be customized by system based on usage and
platform (e.g, struct of arrays vs. array of structs)

CMU 15-418, Spring 2014

Example 2:
Halide: a domain-specific language for image processing

Slide acknowledgments:
Jonathan Ragan-Kelley (MIT)

CMU 15-418, Spring 2014

What does this (++ code do?

Total work ~ 6 x width() x height()

void blur (const Image &in, Image &blurred) {
Image tmp(in.width(), in.height());

for (int vy = 0; y < in.height(); y++)

for (int x = 0; x < in.width(),; x++)

tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+l, y))/3;
for (int vy = 0; y < in.height(); y++)

for (int x = 0; x < in.width(); x++)
blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;
}

3x3 convolution (work efficient, two-pass implementation)
~ 9.9 ms per pixel on a modern CPU

CMU 15-418, Spring 2014

3x3 box blur

-

2X zoom view

CMU 15-418, Spring 2014

Optimized C++ code: 3x3 image blur

Good: 10x faster: ~ 0.9 ms per pixel on a modern quad-core CPU
Bad: specific to SSE, hard to tell whats going on at all!

void fast_blur (const Image &in, Image &blurred) {
~.ml28i one_third = _mm setl_epil6(21846); cer e .
jpragma omp parallel for (partition image vertically)

for (int yTile = 0; yTile < in.height(); yTile += 32) {
-ml28i a, b, ¢, sum, avg;
-ml28i tmp[(256/8) % (32+2)]; i i .
. <«——— Modified iteration order

for (int xTile = 0; xTile < itnwidth(); xTile += 256) {
- ml28i *tmpPtr = tmp;
for (int y = -1; y < 32+1; y++)
const uintlé_t *inPtr = & (in(xTile, “yTile+ty));
for (int x = 0; x < 256; x += 8) {
a _mm loadu_sil28((..ml28ix) (inPtr-1));
b _mm loadu_sil28((..ml28ix) (inPtr+l));
c mm load sil28((..ml28ix) (inPtr));
s mm_add _epilé(_mm add_epilé(a, b), c);
avg mm mulhi epil6 (sum, one_third);
mm store_sil28 (tmpPtr++, avgqg);
inPtr += 8;

}}

tmpPtr = tmp;
for (int y = 0; y < 32; y++) {

Multi-core execution

256x32 block-major iteration
(to maximize cache hit rate)

5 nun
| ll|

use of SIMD vector intrinsics

~m128i xoutPtr = (.ml128i *) (&(blurred(xTile, yTile+y))); - two passes fused into one:
for (int x = 0; x < 256; x += 8) { tmp data read from cache
a = _mm;load_si128(tmthr+(2*256)/8);
b =_mm load sil28 (tmpPtr+256/8);
¢ = _mm load sil28 (tmpPtr++); o .
sum = mm_add epil6(_mm add epil6(a, b), c); Note: this implementation recomputes
avg = _mm _mulhi epil6(sum, one_third); intermediate values. Why?
mm store_sil28 (outPtr++, avgqg);

231}

CMU 15-418, Spring 2014

Halide blur

m Halide = two domain-specific co-languages
1. A purely functional DSL for defining image processing algorithms
2. ADSL for defining “schedules” for how to map these algorithms to a
machine

Images are pure functions from integer coordinates (up to
4D domain) to values (color of corresponding pixels)

Func halide blur (Func in Algorithms are a series of functions (think: pipeline stages)

Func tmp, blurred;
Var x, y, X1, yi; Functions (side-effect-free) map coordinates to values

// The algorithm / (in, tmp and blurred are functions)

tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+l, y))/3;
blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

NOTE: execution order and storage are

return blurred; unspecified by the abstraction.
y Implementation can evaluate, reevaluate,

cache individual points as desired!

CMU 15-418, Spring 2014

Halide program as a pipeline

Func halide_blur (Func in) { in
Func tmp, blurred;
Var x, y, xi, vyi;

// The algorithm l
tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1l, y))/3;
blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

tmp

return blurred; l

}

blurred

CMU 15-418, Spring 2014

Halide blur

m Halide = two domain-specific co-languages

1. A purely functional DSL for defining image processing algorithms
2. A DSL for defining “schedules” for how to map these algorithms to a
machine

Func halide_blur (Func in) {
Func tmp, blurred;
Var x, y, xi, vi;

// The algorithm
tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+l, y))/3;
blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

// The schedule
blurred.tile(x, y, xi, yi, 256, 32) g—————— Whenevaluatingblurred, use 2D tiling order

.vectorize(xi, 8) .parallel(y); .. o
tmp . chunk (x) .vectorize (x, 8); (loops named by x, y, xi, yi). Use tile size 256 x 32.

e Vectorize the xi loop (8-wide), use threads to
return blurred;

} parallelize the y loop

~ Produce only chunks of tmp at a time. Vectorize
the x (innermost) loop

CMU 15-418, Spring 2014

Separation of algorithm from schedule

m Keyidea: separate specification of image processing
algorithm (machine independent) from specification of

schedule (machine-dependent mapping)

m Given algorithm and schedule description, Halide generates
very high quality code for a target machine

- Domain scope:
- All computation over reqular (up to 4D) grids

- Only feed-forward pipelines (includes special support for reductions and
fixed recursion depth)

- All dependencies are inferable by compiler

CMU 15-418, Spring 2014

Halide schedule: producer/consumer scheduling

® Four basic scheduling primitives shown below
m Fifth primitive: “reuse” not shown

blurred blurred
breadth first: each function is total fusion: values are computed
entirely evaluated before the next on the fly each time that they are
one. o~ needed. .

Root “Inline”

blurred blurred
sliding window: values are tiles: overlapping regions are
computed when needed then processed in parallel, functions
stored until not useful anymore. are evaluated one after another.

“Sliding Window” “Chunked”

CMU 15-418, Spring 2014

Halide schedule: domain iteration

Specify both order and how to parallelize
(multi-thread, SIMD vector)

serial y, serial x serial x, serial y

3 4|7 8|11 12
15 16/19 20|23 24

o5 26|29 30 2D blocked iteration order
27 28|31 32|35 36

serial y parallel y split x into 2x_+x,,
vectorized x vectorized x splity into 2y +y,,
serialy , X , Y, X

CMU 15-418, Spring 2014

Halide results

B Camera RAW processing pipeline
(Convert RAW sensor data to RGB image)

- Original: 463 lines of hand-tuned ARM assembly
- Halide: 2.75x less code, 5% faster

" Denoise

2 Demosaic
1 Color Correct
g Tone Curve

m Bilateral filter
(Common image filtering operation used in many applications)

- Original 122 lines of C++
- Halide: 34 lines algorithm + 6 lines schedule
- (CPU implementation: 5.9x faster
- GPU implementation: 2x faster than hand-written CUDA

!. Grid Construction

!. Blurring
" Slicing

Takeaway: Halide is not magic, but its abstractions allow

rapid exploration of optimization space, allowing A -

programmer to reach optimal points quickly

CMU 15-418, Spring 2014

Many other recent domain-specific programming systems

Less domain specific than examples given today,

but still designed specifically for: Gra h\ e

data-parallel computations on big data for amegle s iy

distributed syst “Map-Reduce”
istributed systems (*Map-Reduce”) DSL for graph-based machine Iearning computations

Also see Green-Marl
(another DSL for describing operations on graphs)

Model-view-controller paradigm for
web-applications

Ongoing efforts in many domains...

CMU 15-418, Spring 2014

Domain-specific programming system development

m (an develop DSL as a stand-alone lanquage
- Graphics shading languages
- MATLAB, SQL

m “Embed” DSL in an existing generic language
- e.g., (++ library (GraphLab, OpenGL host-side API, Map-Reduce)

- Lizst syntax above was all valid Scala code

B Active researchidea:

- Design genericlanguages that have facilities that assist rapid embedding of
new domain-specific languages

CMU 15-418, Spring 2014

Facilitating development of new domain-specificlanguages

“Embed” domain-specificlanguage in generic, flexible embedding language
(Stand-alone domain-special language must implement everything from scratch)

1 - 1
| |
' :
. Type N . —— .. Code
Lexer |—, Parser — e v L:w Analysis — Optimization |— gen :
| |
e L e
Typical Compiler
“Modular staging” approach:
1 - - - - -"=- """/ 1
| |
' |
J Type |L. : N J Code
Lexer —4 Parser [— s t—rz Analysis — Optimization — gen :
n |
e L]
Domain language adopts front end from But customizes intermediate representation (IR)
highly expressive embedding language and participates in backend optimization and

code-generation phases (exploiting domain

Leverage techniques like operator overloading, knowledge while doing so)

modern 00P (traits), type inference, closures, to
make embedding language syntax appear native:

Liszt code shown before was actually valid Scala!

Credit: Hassan Chafi CMU 15-418, Spring 2014

Summary

B Modern machines: parallel, heterogeneous
- Only way to increase compute capability in power-constrained world

B Most software uses very little of peak capability of machine
- Very challenging to tune programs to these machines

- Tuning efforts are not portable across machines

®m Domain-specific programming environments trade-off
generality to achieve productivity, performance, and portability

- (Case studies today: Liszt, Halide, OpenGL (see bonus slides)
- Common trait: languages provide abstractions that make dependencies known

- Understanding dependencies is necessary but not sufficient: need domain
restrictions and domain knowledge for system to synthesize efficient
implementations

CMU 15-418, Spring 2014

Bonus slides!
DSL Example 3:

OpenGL: a domain-specific system for 3D rendering

CMU 15-418, Spring 2014

OpenGL graphics pipeline

Key abstraction: the graphics pipeline
B Graphics pipeline defines a basic program structure and data flows

3 B Programmable stages (red boxes): programmer fills in the body of

o1 the “for all” loops

°4
o (pipeline stage executes “for all” primitives in input stream)
oy Verticesin 3D space

(provided by application)
Vertex stream l

Vertex Processing
, E . Triangles positioned on screen
Triangle stream ; ;

Fragment Generation

(Rasterization)
% %ﬂ “Fragments” (one fragment per each covered pixel per triangle)

% ?- Shaded fragments

Fragment stream

Fragment Processing

Fragment stream

Pixel Blend Operations

Output image (pixels)

CMU 15-418, Spring 2014

Fragment “shader” program

HLSL shader program: defines behavior of fragment processing stage

Executes once per pixel covered by each triangle

Input: a “fragment”: information about the triangle at the pixel

Output: RGBA color (float4 datatype)

sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;

float4 diffuseShader(float3 norm, float2 uv)

{
float3 kd;

kd = myTex.sample(mySamp, uv);

kd *= clamp(dot(lightDir, norm), 0.0, 1.0);

return float4(kd, 1.0);

Fragment Generation
(Rasterization)

Productivity:

- SPMD program: no explicit parallelism

- Implicit parallelism: programmer writes no
loops over fragments (think of shader as a
loop body)

- Code runs independently for each input
fragment (no loops = impossible to express
a loop dependency)

Performance:
- SPMD program compiles to wide SIMD
processing on GPU
- Work for many fragments dynamically
balanced onto GPU cores

- Performance Portability:
- Scales to GPUs with different # of cores

- SPMD abstraction compiles to different
SIMD widths (NVIDIA=32, AMD=64,

CMU 15-418, Spring 2014

Special language primitive for texture mapping

sampler mySamp; Intuitive abstraction: represents a texture
Texture2D<float3> myTex; lookup like an array access with a 2D floating
float3 lightDir; point index.

Texture fetch semantics: sample from
float4 diffuseShader(float3 norm, float2 uv) myTex at coordinate uv and filter using
{ scheme (e.g., bilinear filtering) defined by

mySamp.

float3 kd;

kd = myTex.sample(mySamp, uv);

kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
return float4(kd, 1.0);

Result of mapping texture onto
plane, viewed with perspective

myTex:
NxN texture buffer

uv = (0.3, 0.5)

CMU 15-418, Spring 2014

Texture mapping is expensive (and performance

m Texture mapping is a filtering operation (more than an array
lookup: see 15-462)

- If implemented in software: ~ 50 instructions, multiple conditionals
- Read at least 8 values from texture map, blend them together

- Unpredictable data access, little temporal locality

m Typical shader program performs multiple texture lookups

B Texture mapping is one of the most computationally
demanding AND bandwidth intensive aspects of the graphics
pipeline

- Resources for texturing must run near 100% efficiency

CMU 15-418, Spring 2014

Performance: texture mapping

Highly multi-threaded cores hide latency of memory access

(texture primitive = source of long memory stalls is explicit in programming

model)

Fixed-function HW to perform texture mapping math

Cnarial-rarha dacinanc tn rcanture ranca mmlnii: rm-rl-nqlv arrass to texture data

~~

o
e
— .
Tossellate = = "essellate

\

Tessellate Tessellate

Clip/Cull Clip/Cull

Rasterize Rasterize
Clip/Cull Clip/Cull
Rasterize Rasterize

Zbuffer/ Zbuffer/ Zbuffer/
Blend Blend Blend

Zbuffer/ Zbuffer/ Zbuffer/
Blend Blend Blend

Scheduler / Work Distributor

\

-‘

=

CMU 15-418, Spring 2014

Performance: global application orchestration

Parallel work:

mrm > VAYVARTYE

Hundreds of thousands of triangles

Fragment
Generation

O0O0000000000000000000000
Millions of fragments to shade

Fragment

Pixel Blend

EOOO0OOOEEEEEEEOOROOOOO0O0O0
Millions of shaded fragments to blend into output image

Efficiently scheduling all this parallel work onto the GPU’s heterogeneous pool of resources (while also
respecting the ordering requirements of the OpenGL programming model) is challenging.

Each GPU vendor uses its own custom strategy (high-level abstraction allows for different implementations)

CMU 15-418, Spring 2014

OpenGL summary

m Productivity:

- High-level, intuitive abstractions (taught to undergrads in intro graphics class)
- Application implements kernels for triangles, vertices, and fragments
- Specific primitives for key functions like texture mapping

m Portability

= Runs across wide range of GPUs: low-end integrated, high-end discrete, mobile
- Has allowed significant hardware innovation without impacting programmer

m High-Performance

- Abstractions designed to map efficiently to hardware
(proposed new features disallowed if they do not!)
- Encapsulating expensive operations as unique pipeline stages or built-in functions
facilitates fixed-function implementations (texture, rasterization, frame-buffer blend)
- Utilize domain-knowledge in optimizing performance / mapping to hardware
- Skip unnecessary work, e.qg., if a triangle it is determined to be behind another,
don’t generate and shade its fragments
- Non-overlapping fragments are independent despite ordering constraint
- Interstage queues/buffers are sized based on expected triangle sizes
- Use pipeline structure to make good scheduling decisions, set work prioritieg,,

