15-418/618 Spring 2014 Just-For-Fun-and-Understanding Exercise
Understanding SIMD Execution

Question 1:

Consider the simple problem: given a point on a line and a set of line segments, find all the primitives that
contain the point.

Figure 1 (on the last page of this handout) shows a collection of line segments in 1D (the start and end of
each segment is given). The figure also shows a binary tree data structure organizing the segments into a
spatial hierarchy. Leaves of the tree correspond to the line segments. Each interior node of the hierarchy
represents the spatial extent spanned by its children. Notice that sibling leaves can (and do) overlap. Us-
ing this data structure, it is possible to answer the question “what segments contain a specified point”
without testing the point against all segments in the scene.

The function find_largest_segment_1 (code given on the next page) uses the tree data structure in
Figure 1 to quickly find all line segments containing a point in 1D. It returns the result of
very_expensive_function() called on the largest of the line segments containing the point. For
simplicity in this question, assume that very_expensive_function() is a straight-line block of code
with no conditionals or data-dependent control.

Study the algorithm, and understand how it works. For example, given the input point pt x = 0.1, the al-
gorithm will perform the following sequence of operations: (I-test, NO), (I-hit, NO), (I-test, N1), (I-hit,
N1), (I-test, N2), (I-hit, N2) (L-test, N3), (VEF, N3), (I-test, N4), (I-hit, N4), (L-test, N5), (VEF, N5), (L-
test, N6), (L-test,N7), (I-test, N8), (I-miss, N8)

where:

e (I-test, Nx) represents a point-interior node test against Node X.

e (I-hit, Nx) represents logic of traversing to the child nodes after it is determined the query point is
contained within Node X.

* (I-miss, Nx) represents logic of traversing to sibling/ancestor nodes when the point is not con-
tained within node X.

e (L-test, Nx) represents a point-leaf node test against the segment represented by Node X.

* (VEF, Nx) represents very_expensive_function executed on node X.

Now consider a SIMD implementation of the SPMD program find_largest_segment_1 on a 4-wide
system using the four points 0.1, 0.4, 0.7, and 0.75 as inputs (e.g., consider an ISPC implementation with
gang size 4). Using the notation established above, chart the utilization of each vector “lane” of the pro-
cessor in the 4-column matrix below (columns indicate behavior of each of the four SIMT lanes, and rows
correspond to processor behavior at a particular point in time). Note that the first column of the matrix
should contain the values given in the example for point 0.1 above. It may be helpful to use “---* to indi-
cate that a lane’s operation is masked at a particular time.

struct Node {
float min, max;
bool leaf;
Node* left;
Node* right;

3

// returns the value of very_expensive_function(node, pt_x) for the largest
// segment containing pt_x. If no segment contains pt_x, returns NO_SEGMENT
float find_largest_segment_1(float pt_x, Node* root_node)

{

Stack<Node*> stack;

Node* node;

float max_extent = 0.0;
float result = NO_SEGMENT;

stack.push(root_node);

while(!stack.size() == 0)

{
node = stack.pop();

while (!node->leaf)

{

// I-test: test to see if point is contained within interior node
if (pt_x >= node->min && pt_x <= node->max)
{

// I-hit: continue to child nodes

push(node->right);

node = node->left;

}

else
{
// I-miss: point not contained within node
if (stack.size() == 0)
return result;
else
node = stack.pop();
}
}

// L-test: test to see if point is contained within line segment (leaf node)
if (pt_x >= node->min && pt_x <= node->max && (node->max-node->min) > max_extent)
{
// this basic block is referred to as VEF in problem description:
result = very_expensive_function(node, pt_x);
max_extent = node->max - node->min;
}
}

return result;

}

Tip: if any row of the matrix below indicates two lanes are performing different work, you might want to

check your thinking. Why?

n
+
D
©

pt x = 0.1

pt x = 0.4

pt x = 0.7

pt x = 0.75

(I-test, NO)

(I-test, NO)

(I-test, NO)

(I-test, NO)

(I-hit, NO)

(I-hit, NO)

(I-hit, NO)

(I-hit, NO)

VIO NOUVARWN|EL

=
o

=
=

=
N

=
w

[ERY
N

=
(92

=
(o))

=
N

=
(0]

=
O

N
(W)

N
=

N
N

N
w

N
N

N
%21

N
(o)}

N
N

N
(0 0]

N
O

w
o

w
=

W
N

w
w

w
N

w
(92

Question 2:

The function find_largest_segment_2 produces the same output as find_largest_segment_1,
but the implementation is different. Chart the code’s SIMD execution behavior on the same four points
as in question 2.

float find_largest_segment_2(float pt_x, Node* root_node)
{

Stack<Node*> stack;

Node* node;

float max_extent = 0.0;
float result = NO_SEGMENT;

stack.push(root_node);

while(!stack.size() == 9)

{
node = stack.pop();
if (!node->leaf)
{
// I-test: test to see if point is contained within interior node
if (pt_x >= node->min && pt_x <= node->max)
// I-hit: continue to child nodes
push(node->right);
push(node->left);
}
}
else
{
// L-test: test to see if point is contained within line segment (leaf node)
if (pt_x >= node->min && pt_x <= node->max && (node->max-node->min) > max_extent)
{
// this basic block is referred to as VEF in the problem description:
result = very_expensive_function(node, pt_x);
max_extent = node->max - node->min;
}
}
}

return result;

}

Hint: if any row of the matrix below indicates two lanes are performing different work, you might want to
check your thinking. Why?

n
+
D
©

pt x = 0.1

pt x = 0.4

pt x = 0.7

pt x = 0.75

(I-test, NO)

(I-test, NO)

(I-test, NO)

(I-test, NO)

(I-hit, NO)

(I-hit, NO)

(I-hit, NO)

(I-hit, NO)

VNV h|lwWNER

=
o

=
=

=
N

=
w

[ERY
N

=
(92

=
(o))

=
N

=
(0]

=
O

N
(W)

N
=

N
N

N
w

N
N

N
%21

N
(o)}

N
N

N
(0 0]

N
O

w
o

w
=

W
N

w
w

w
N

w
(92

Question 3:

1.

What are the advantages and disadvantages of the two implementations given in questions 2 and
3? Although I only provided one example dataset of segments and point queries in this assign-
ment, in forming your answer I suggest you consider the behavior of these functions under vary-
ing characteristics of the binary tree (hint: consider very large, unbalanced trees), different costs
of very_expensive_function, or different point queries. In what situations would you prefer
find_largest_segment_1? What about find_largest_segment_2?

What is a simple change to the code that would not change the final result, but significantly re-
duce both execution divergence and total work performed by the algorithm?

¥8°0/£9°0 0/$50 L80/20) (v20/60°0
N~Z ~Z IN SN

68°0/690 ﬁé\ 50 270/ 90
§IN 0IN LN

68°0/7S0
6N

L20/0°0
N

zr0/0%0
IN

01/#50
SN

0'1/0%0
ON

33.) Aaeurq urpuodsario)

8.0
680 690 520 600
01 160 m 180 m £9°0 rs0 zro 9€°0 L2000 020 zro 00
: e ——
]

T uI S)udw3Is durg

1 9angig

