
Notes on Parallel
Sort

Parallel Computer Architecture and
Programming

CMU 15-418/15-618, Spring 2015

1

Parallel sort API
Inputs:
data: Input array (a[n/p])
procs: Number of processes (p)
procId: This process id (i)
dataSize: Aggregate data size (n)
localSize: Size of data on process i (~n/p)
Outputs:
sortedData: Sorted array (sorted)
localSize: Size of sorted data on process I
Important: set localSize to sortedData array size to pass the
result checking, 0 to skip.

2

Parallel sort using MPI
Step 1: Choosing pivots to define buckets

Step 2: Bucketing elements of the input array

Step 3: Redistributing elements

Step 4: Final local sort
Warning: This is only a sketch of the algorithm, not
implementation (Think of how you will implement this with
MPI)

3

4

Step 1: Choosing pivots to define buckets
… a[0] a[1] a[n-1] a[n]:

S[o*p]:

Sorted S[o*p]:

Pick o*p samples from a[n]

Pivot[p-1]:

Evenly choose p-1 pivots

2.9 2.5 0.3 4.9 0.9 3.7 2.1 4.3 1.3 1.6 4.0 3.9

0.3 0.9 1.3 2.1 2.5 2.9 3.7 3.9 4.0 4.3 4.9 1.6

1.6 2.9 4.0

1.6 ≤ a[j] <
2.9

2.9 ≤ a[j] <
4.0 4.0 ≤ a[j] a[j] < 1.6

Define p
buckets:

a[n]: Input array S[o*p]: Sample array o: Oversample n = dataSize p = procs
Tip for o: our reference solution use o = 12 * lg(n)

We are using p = 4, o = 3 for
demonstration

5

Step 2: Bucketing elements of the input array

2.6 1.5 1.6

3.9 0.4 4.5

2.3 4.4 0.3

1.9 1.0 4.9

Process 1

Process 2

Process 3

Process 0

1.5,
0.4,
0.3,

1.0, …

4.5,
4.4,
4.9,
…

3.9,
…

2.6,
1.6,
2.3,

1.9, …

… a[n/p]:

… a[n/p]:

… a[n/p]:

… a[n/p]:

Put all the elements into their corresponding bucket (as defined in step 1)
Note that all processes have to agree on their bucket definition

Buckets defined by pivots in step 1 Input arrays in each process’s address space

6

Step 3: Redistributing elements

Process 1

Process 2

Process 3

Process 0

Redistribute the elements such that elements on each process are now separate,
i.e., elements on process i < elements on process j

Virtual buckets from step 2 Buckets after redistribution

7

Step 4: Final local sort

Process 1

Process 2

Process 3

2.6, 1.6, 2.3, 1.9, …

3.9, …

4.5, 4.4, 4.9, …

1.5, 0.4, 0.3, 1.0, … Process 0

Unsorted buckets from step 3

Process 1

Process 2

Process 3

1.6, 1.6, 1.7, 1.8, 1.8, 1.8, …

2.9, 2.9, 2.9, 3.0, 3.1, 3.2, …

4.0, 4.1, 4.3, 4.4, 4.5, 4.6, …

0.1, 0.2, 0.2, 0.3, 0.4, 0.4, … Process 0

Sorted buckets after step 4

Sequentially sort each bucket using a fast sequential sort algorithm
The distributed array is now sorted!

Step 4: Final local sort
Notes for the final step:
Buckets should not overlap so
that all elements on process i
should be less than elements on
process j.
Bucket size on each process
can be different, but,
Update localSize to the bucket
size on each process!

8

Process 1

Process 2

Process 3

Process 0
… 0.1 0.2

… 1.6 1.6

… 2.9 2.9

… 4.0 4.1

Sorted buckets from step 4

Helper functions

9

Helps you debug your program, can be easily turned off by uncommenting
 in parallelSort.h

e.g.,

e.g.,
Uniform-randomly pick samples from data and put in sample array

Useful STL functions
std::sort(first, last)
e.g.,
Comments: a very decent sequential sort
std::inplace_merge(first, middle, last)
e.g.,
Comments: merge two sorted arrays between

 (1) first to middle-1, and
 (2) middle to last-1

std::lower_bound(first, middle, val)
e.g.,
Comments: useful to find buckets for each elements

Examples can be found in src/stlSort.cpp
References: http://www.cplusplus.com/

10

Challenges
Choose a pivot that can divide the workload evenly.
Experiment your code with different inputs we provided:
norm, exp, bad1
How to deal with different input patterns?
What are the inputs that can break your sampling scheme?

Thought experiment:
What if the input array is an integer array?
What are the new challenges induced by integer array?

11

