Notes on Parallel
Sort

Parallel Computer Architecture and
Programming

CMU 15-418/15-618, Spring 2015

01d parallelSort (

F:) float *data, float *&sortedData,
arallel SO rt API int procs, int procId,

size t dataSize, size t &localSize) {
// Implement parallel sort algorithm as
// described in assignment 3 handout.

Inputs: localsize = 0;
data: Input array (a[n/p]) } ;
procs: Number of processes (p)

procld: This process id (i)

dataSize: Aggregate data size (n)

localSize: Size of data on process i (~n/p)
Outputs:

sortedData: Sorted array (sorted)

localSize: Size of sorted data on process |

Important: set localSize to sortedData array size to pass the
result checking, 0 to skip.

Parallel sort using MPI
Step 1: Choosing pivots to define buckets

Step 2: Bucketing elements of the input array
Step 3: Redistributing elements

Step 4: Final local sort

Warning: This is only a sketch of the algorithm, not

implementation (Think of how you will implement this with
MPI)

Step 1: Choosing pivots to define buckets

a[n]: | al0] | a[1] ... a[n-1]
S[o*p]: 0.3149]0.9 4311.3 4.0
Sorted S[o*p]: | 0.3 |1 0.9 1.3 4014349
Evenly choose p-1 pivoAtS/‘/‘/l/
Pivot[p-1]: | 1.6 | 2.9 | 4.0 We are using p =4, o = 3 for
demonstration

Define p
buckets:

a[n]: Input array S[o*p]: Sample array 0: Oversample n = dataSize p = procs
Tip for o: our reference solution use o0 =12 * Ig(n)

Step 2: Bucketing elements of the input array

__________ S ! 1.5
x | Process|0
15, | i | 45, Aln/pl: 04 Process|1
0.4, . . | , 1 4.4,
1.0, ... 0o, 2 a[n/p]: 0.3
| ! 2 2 Process|2
| . | | a[n/p]: 1.0
_____________ 2 2) Process|3
Buckets defined by pivots in step 1 Input arrays in each process’s address space

Put all the elements into their corresponding bucket (as defined in step 1)
Note that all processes have to agree on their bucket definition

Step 3: Redistributing elements

P - - - - -

—

I

S~ == D S~

\

- JProcess

Process

Process

~ - - S - - = -

- Process

Virtual buckets from step 2

Buckets after redistribution

Redistribute the elements such that elements on each process are now separate,

l.e., elements on process i < elements on process j

Step 4: Final local sort

— I
15,04,0.3,1.0, ...
Process
26,16,2.3,1.9, ...
Proces
B2h o= Proces

— I
0.1,0.2,0.2,0.3,04,04, ...
Process O
16,16,1.7,1.8,1.8,1.8, ...
Process 1
29,29,29,30, 3.1,3.2, ... Process 2

- Process

Unsorted buckets from step 3

3 - Proces$

Sorted buckets after step 4

Sequentially sort each bucket using a fast sequential sort algorithm

The distributed array is now sorted!

Step 4: Final local sort

Notes for the final step:

Buckets should not overlap so 0.110.2
that all elements on process i

should be less than elements on
process j. 16116

Bucket size on each process
can be different, but, 29|29

Update localSize to the bucket
size on each process!

Process 0

Process 1

Process 2

4.0 4.1

Process 3

Sorted buckets from step 4

Helper functions

void printArr (const char* arrName, int *arr,
float *arr,

void printArr (const char* arrName,

ize t size, int procId):;
size t size, int procId);

o

e4},printArr("pivot", pivot, procs-1, procId);

Helps you debug your program, can be easily turned off by uncommenting
#define NO_DEBUG in parallelSort.h

oid randomSample (float *data, size t dataSize,
float *sample, size t sampleSize) {
size t 1=0; i<sampleSize; i++) {

sample[i] = data[rand()%dataSize];

}
}
ehg_!randomSample(data, localSize, sample, 12*log(dataSize));

Uniform-randomly pick samples from data and put in sample array

Useful STL functions

std::sort(first, last)
€.Jg. sort(data, data + localSize);

Comments: a very decent sequential sort
std::inplace_merge(first, middle, last)

e_g_vinplace_merge(data, data + 5, data + 10);
Comments: merge two sorted arrays between
(1) first to middle-1, and
(2) middle to last-1

std::lower_bound(first, middle, val)

e_g_".l';? bucketId = lower_bouna(pivot, pivot+procs-1, datal[i]) - pivot;

Comments: useful to find buckets for each elements

Examples can be found in src/stlSort.cpp
References: http://www.cplusplus.com/

10

Challenges

Choose a pivot that can divide the workload evenly.

Experiment your code with different inputs we provided:
norm, exp, bad1

How to deal with different input patterns?
What are the inputs that can break your sampling scheme?

Thought experiment:
What if the input array is an integer array?
What are the new challenges induced by integer array?

