
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2015

Lecture 12:

Directory-Based
Cache Coherence

 CMU 15-418, Spring 2015

Home
Edward Sharpe & the Magnetic Zeros

(Up From Below)

Tunes

“We actually wrote this song at Cray for orientation of hires on the
memory system team. The’ll never forget where to get information

about about a line in a directory-based cache coherence scheme.”
- Alex Ebert

http://en.wikipedia.org/wiki/Alex_Ebert

 CMU 15-418, Spring 2015

NVIDIA GPUs do not implement cache coherence
▪ Incoherent per-SMX core L1 caches
▪ Single, unified L2 cache

Memory (DDR5 DRAM)

Shared L2 Cache

L1 Cache

SMX Core

L1 Cache

SMX Core

L1 Cache

SMX Core

L1 Cache

SMX Core
. . .

CUDA global memory atomic operations “bypass” L1 cache,
so an atomic operation will always observe up-to-date data

// this is a read-modify-write performed atomically on the
// contents of a line in the L2 cache
atomicAdd(&x,	 1);	

L1 caches are write-through to L2 by default

CUDA volatile qualifier will cause compiler to generate a LD
instruction that will bypass the L1 cache. (see ld.cg or ld.cg
instruction)

NVIDIA graphics driver will clear L1 caches between any two
kernel launches (ensures stores from previous kernel are
visible to next kernel. Imagine a case where driver did not
clear the L1 between kernel launches…

Kernel launch 1:
SMX core 0 reads x (so it resides in L1)
SMX core 1 writes x (updated data available in L2)

Kernel launch 2:
SMX core 0 reads x (cache hit! processor observes stale data)

If interested in more details, see “Cache Operators” section of NVIDIA PTX Manual
(Section 8.7.6.1 of Parallel Thread Execution ISA Version 4.1)

 CMU 15-418, Spring 2015

Today: what you should know

▪ What limits the scalability of snooping-based approaches to
cache coherence?

▪ How does a directory-based scheme avoid these problems?

▪ How can the storage overhead of the directory structure be
reduced? (and at what cost?)

 CMU 15-418, Spring 2015

Implementing cache coherence

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Memory I/O

The snooping cache coherence
protocols from the past two lectures
relied on broadcasting coherence
information to all processors over the
chip interconnect.

Every time a cache miss occurred, the
triggering cache communicated with
all other caches!

We discussed what information was communicated and what actions were taken to
implement the coherence protocol.

We did not discuss how to implement broadcast.
(one example is a shared bus)

 CMU 15-418, Spring 2015

Quick demo

 CMU 15-418, Spring 2015

Problem: scaling cache coherence to large machines

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Interconnect

Recall non-uniform memory access (NUMA) shared memory systems (e.g., PSC Blacklight)

Idea: locating regions of memory near the processors increases scalability: it yields higher
aggregate bandwidth and reduced latency (especially when there is locality in the application)

But... efficiency of NUMA system does little good if the coherence protocol can’t also be scaled!

Consider this case: processor accesses nearby memory (good...), but to ensure coherence still must
broadcast to all other processors it is doing so (bad...).

Some terminology:

▪ cc-NUMA = “cache-coherent, non-uniform memory access”

▪ Distributed shared memory system (DSM): cache coherent, shared address space, but
architecture implemented by physically distributed memories

 CMU 15-418, Spring 2015

One possible solution: hierarchical snooping

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Interconnect

Use snooping coherence at each level

Memory

Processor Processor Processor Processor

Interconnect

Processor Processor Processor Processor

Interconnect

Interconnect
Memory Memory

Another example: with memory localized with the groups of processors, rather than centralized

 CMU 15-418, Spring 2015

One possible solution: hierarchical snooping

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Interconnect

Use snooping coherence at each level

Memory

Advantages

▪ Relatively simple to build (already have to deal with similar issues due to multi-level caches)

Disadvantages

▪ The root of the network can become a bottleneck

▪ Larger latencies than direct communication

▪ Does not apply to more general network topologies (meshes, cubes)

 CMU 15-418, Spring 2015

Scalable cache coherence using directories

▪ Snooping schemes broadcast coherence messages to
determine the state of a line in the other caches

▪ Alternative idea: avoid broadcast by storing information about
the status of the line in one place: a “directory”
- The directory entry for a cache line contains information about the state of the

cache line in all caches.
- Caches look up information from the directory as necessary
- Cache coherence is maintained by point-to-point messages between the caches

(not by broadcast mechanisms)

 CMU 15-418, Spring 2015

A very simple directory

Scalable Interconnect

Processor

Local Cache

Directory

Memory

. .
.

One cache line of memory

One directory entry per
cache line of memory

P presence bits: indicate whether processor P
has line in its cache

Dirty bit: indicates line is dirty
in one of the processors’ caches

 CMU 15-418, Spring 2015

A partitioned directory

Scalable Interconnect

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

▪ “Home node” of a line: node with memory holding the corresponding data for the line
- Example: node 0 is the home node of the orange line, node 1 is the home node of the blue line

▪ “Requesting node”: node containing processor requesting line

Directory partition is co-located with memory it describes

 CMU 15-418, Spring 2015

Example 1: read miss to clean line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is not dirty

▪ Read miss message sent to home node of the requested line

▪ Home directory checks entry for line

1. Request: read miss msg

Scalable Interconnect

 CMU 15-418, Spring 2015

Example 1: read miss to clean line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is not dirty

▪ Read miss message sent to home node of the requested line
▪ Home directory checks entry for line
- If dirty bit for line is OFF, respond with contents from memory, set presence[0] to true

(to indicate line is cached by processor 0)

2. Response (line of data from memory)

1. Request: read miss msg

Scalable Interconnect

 CMU 15-418, Spring 2015

Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s cache)

▪ If dirty bit is ON, then data must be sourced by another processor
▪ Home node must tell requesting node where to find data
- Responds with message providing identity of line owner (“get it from P2”)

2. Response: owner id

1. Request: read miss msg

Scalable Interconnect

 CMU 15-418, Spring 2015

Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s cache)

1. If dirty bit is ON, then data must be sourced by another processor

2. Home node responds with message providing identity of line owner

3. Requesting node requests data from owner

4. Owner changes state in cache to SHARED (read only), responds to requesting node

2. Response: owner id

1. Request: read miss msg

3. Request: data
4. Response: data

Scalable Interconnect

 CMU 15-418, Spring 2015

Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s cache)

1. If dirty bit is ON, then data must be sourced by another processor
2. Home node responds with message providing identity of line owner
3. Requesting node requests data from owner
4. Owner responds to requesting node, changes state in cache to SHARED (read only)
5. Owner also responds to home node, home clears dirty, updates presence bits, updates memory

2. Response: owner id

1. Request: read miss msg

3. Request: data
4. Response: data

5. Response: data+dir revision

Scalable Interconnect

 CMU 15-418, Spring 2015

Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

Scalable Interconnect

 CMU 15-418, Spring 2015

Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

2. Response: sharer ids + data

Scalable Interconnect

 CMU 15-418, Spring 2015

Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)
2. Response: sharer ids + data

Scalable Interconnect

 CMU 15-418, Spring 2015

Example 3: write miss

Scalable Interconnect

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)

2. Response: sharer ids + data

4a. Response: ack from P2

4b. Response: ack from P1

After receiving both invalidation acks, P0 can perform write

 CMU 15-418, Spring 2015

Advantage of directories
▪ On reads, directory tells requesting node exactly where to get

the line from
- Either from home node (if the line is clean)
- Or from the owning node (if the line is dirty)
- Either way, retrieving data involves only point-to-point communication

▪ On writes, the advantage of directories depends on the
number of sharers
- In the limit, if all caches are sharing data, all caches must be

communicated with (just like broadcast in a snooping protocol)

 CMU 15-418, Spring 2015

Cache invalidation patterns
64 processor system

Barnes-Hut

LU

Ocean

0 1 2 3 4 5 6 7

8 t
o 1

1

12
 to

 15

16
 to

 19

20
 to

 23

24
 to

 27

28
 to

 31

32
 to

 35

36
 to

 39

40
 to

 43

44
 to

 47

48
 to

 51

52
 to

 55

56
 to

 59

60
 to

 63

Graphs plot histogram of number
of sharers of a line at the time of
a write

In general only a few processors
share the line (only a few
processors must be told of writes)

Not shown here, but the
expected number of sharers
typically increases slowly with P
(good!)

 CMU 15-418, Spring 2015

In general, only a few sharers during a write
▪ Access patterns

- “Mostly-read” objects: lots of sharers but writes are infrequent, so minimal impact on
performance (e.g., root node in Barnes-Hut)

- Migratory objects (one processor reads/writes for while, then another, etc.): very few sharers,
count does not scale with number of processors

- Frequently read/written objects: frequent invalidations, but few of them because sharer count
cannot build up between invalidations (e.g, shared task queue)

- Low-contention locks: infrequent invalidations, no performance problem
- High-contention locks: can be a challenge, because many readers present when lock released

▪ Implication 1: directories are useful for limiting coherence traffic
- Don’t need a broadcast mechanism to “tell everyone”

▪ Implication 2: suggests ways to optimize directory implementations
(reduce storage overhead)

 CMU 15-418, Spring 2015

Full bit vector directory representation
▪ Recall: one presence bit per node

▪ Storage proportional to P x M
- P = number of nodes (e.g., processors)
- M = number of lines in memory

▪ Storage overhead rises with P
- Assume 64 byte cache line size (512 bits)
- 64 nodes (P=64) →12% overhead
- 256 nodes (P=256) → 50% overhead
- 1024 nodes (P=1024) → 200% overhead

. .
.

P

M

. . .

 CMU 15-418, Spring 2015

Reducing storage overhead of directory
▪ Optimizations on full-bit vector scheme

- Increase cache line size (reduce M term)
- What are possible problems with this approach?

(consider graphs from last lecture)

- Group multiple processors into a single directory “node” (reduce P term)
- Need only one directory bit per node, not one bit per processor
- Hierarchical: could use snooping protocol to maintain coherence among

processors in a node, directory across nodes

▪ We will now discuss two alternative schemes
- Limited pointer schemes (reduce P)
- Sparse directories (reduce M)

 CMU 15-418, Spring 2015

Limited pointer schemes
Since data is expected to only be in a few caches at once, storage for a limited number
of pointers per directory entry should be sufficient (only need a list of the nodes
holding a valid copy of the line!)

Ocean

Example: 1024 processor system
Full bit vector scheme needs 1024 bits per line
Instead, can store ~100 pointers to nodes holding the line (log2(1024)=10 bits per pointer)
In practice, our workload evaluation says we can get by with far less than this

0 1 2 3 4 5 6 7

8 t
o 1

1

12
 to

 15

16
 to

 19

20
 to

 23

24
 to

 27

28
 to

 31

32
 to

 35

36
 to

 39

40
 to

 43

44
 to

 47

48
 to

 51

52
 to

 55

56
 to

 59

60
 to

 63

 CMU 15-418, Spring 2015

Managing overflow in limited pointer schemes

▪ Fallback to broadcast (if broadcast mechanism exists)
- When more than max number of sharers, revert to broadcast

▪ If no broadcast mechanism present on machine
- Do not allow more than a max number of sharers
- On overflow, newest sharer replaces an existing one

(must invalidate line in the old sharer’s cache)

▪ Coarse vector fallback
- Revert to bit vector representation representation
- Each bit corresponds to K nodes
- On write, invalidate all nodes a bit corresponds to

Many possible approaches

 CMU 15-418, Spring 2015

Optimizing for the common case
Limited pointer schemes are a great example of smartly

understanding and optimizing for the common case:

1. Workload-driven observation: in general the number of cache line sharers is low

2. Make the common case simple and fast: array of pointers for first N sharers

3. Uncommon case is still handled correctly, just with a slower, more complicated
mechanism (the program still works!)

4. Extra expense of the complicated solution is tolerable, since it happens
infrequently

 CMU 15-418, Spring 2015

Limited pointer schemes: summary
▪ Limited pointer schemes reduce directory

storage overhead caused by large P
- By adopting a compact representation of a list of sharers

▪ But do we really even need to maintain storage
for a list for each cache-line chunk of data in
memory?

. .
.

P

M

. . .

Directory

 CMU 15-418, Spring 2015

Limiting size of directory: sparse directories

▪ Key observation: the majority of memory is NOT resident in
cache. And to carry out coherence protocol the system only
needs sharing information for lines that are currently in cache
- Most directory entries are empty most of the time
- 1 MB cache, 1 GB memory per node → 99.9% of directory entries are idle

 CMU 15-418, Spring 2015

Sparse directories
Directory at home node maintains pointer to only one node
caching line (not a list of sharers)
Pointer to next node in list is stored as extra information in
the cache line (just like the line’s tag, dirty bits, etc)

. .
.M

Processor cache: node 0
(last reader)

prev ptr

line data

Directory (home node for line)

Processor cache: node 1

next ptr

Processor cache: node 2
(last reader)

On read miss: add requesting node to head of list

On write miss: propagate invalidations along list
On evict: need to patch up list (linked list removal)

 CMU 15-418, Spring 2015

Sparse directories: scaling properties
Good:

- Low memory storage overhead (one pointer to list head per line)
- Additional directory storage is proportional to cache size (the list

stored in SRAM)
- Traffic on write is still proportional to number of sharers

. .
.M

Processor cache: node 0

prev ptr

line data

Directory (home node for line)

Processor cache: node 1

next ptr

Processor cache: node 2

Bad:
- Latency of write proportional to number of sharers

(invalidation of lines is serial)
- Higher implementation complexity

 CMU 15-418, Spring 2015

Recall: write miss in full bit vector scheme

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)
2. Response: sharer ids + data

Original bit-vector scheme sends same number of invalidation messages
as sparse directory approach, but invalidation messages can be sent to

all processors in parallel

Scalable Interconnect

 CMU 15-418, Spring 2015

Optimizing directory-based coherence

▪ Reducing storage overhead of directory data structure
- Limited pointer schemes
- Sparse directories

▪ Reducing number of messages sent to implement
coherence protocol

 CMU 15-418, Spring 2015

Memory

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache)

1. Request: read miss msg

Recall: read miss to dirty line

Scalable Interconnect

 CMU 15-418, Spring 2015

Memory

Recall: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache)
(Note: figure below shows final state of system after operation is complete)

Five network transactions in total
Four of the transactions are on the “critical path” (transactions 4 and 5 can be done in parallel)

- Critical path: sequence of dependent operations that must occur to complete operation

2. Response: owner id

1. Request: read miss msg

3. Request: data
4. Response: data

5. Response: data+dir revision

Scalable Interconnect

 CMU 15-418, Spring 2015

Memory

Intervention forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache)

1. Request: read miss msg

Scalable Interconnect

 CMU 15-418, Spring 2015

Memory

Intervention forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache)

1. Request: read miss msg

3. Response: data+dir revision

2. Request: intervention read

2. Home node requests data from owner node (processor 2)
3. Owning node responds

Scalable Interconnect

 CMU 15-418, Spring 2015

Memory

Intervention forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache)

1. Request: read miss msg

3. Response: data+dir revision

2. Request: intervention read

4. Response: data

4. Home node updates directory, and responds to requesting node with data
Four network transactions in total (less traffic)
But all four of the transactions are on the “critical path.” Can we do better?

Scalable Interconnect

 CMU 15-418, Spring 2015

Memory

Request forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache)

1. Request: read miss msg

Scalable Interconnect

 CMU 15-418, Spring 2015

Memory

Request forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache)

1. Request: read miss msg 2. Request: send data to requestor

Scalable Interconnect

 CMU 15-418, Spring 2015

Memory

Request forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache)

1. Request: read miss msg 2. Request: send data to requestor

3/4. Response: data
(2 msgs: sent to both home node and requestor)

Four network transactions in total
Only three of the transactions are on the critical path (transactions 3 and 4 can be done in parallel)
Note: system is no longer pure request/response (since P0 sent request to P1, but receives response from P2)

Scalable Interconnect

 CMU 15-418, Spring 2015

Summary: directory-based coherence
▪ Primary observation: broadcast doesn’t scale, but luckily we don’t

need to broadcast to ensure coherence because often the number
of caches containing a copy of a line is small

▪ Instead of snooping, just store the list of sharers in a “directory”
and check the list as necessary

▪ One challenge: reducing overhead of directory storage
- Use hierarchies of processors or larger line sizes
- Limited pointer schemes: exploit fact the most processors not sharing line
- Sparse directory schemes: exploit fact that most lines are not in cache

▪ Another challenge: reducing the number of messages sent (traffic)
and critical path (latency) of message chains needed to implement
coherence operations

 CMU 15-418, Spring 2015

Directory coherence in Intel Core i7 CPU
▪ Centralized directory for all lines

in the L3 cache
(note importance of inclusion property)

▪ Directory maintains list of L2
caches containing line

▪ Instead of broadcasting
coherence traffic to all L2’s, only
send coherence messages to L2’s
that contain the line
(Core i7 interconnect is a ring, it is not a bus)

▪ Directory dimensions:
- P=4
- M = number of L3 cache lines

Core

L1 Data Cache

L2 Cache

Shared L3 Cache
(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

