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Home 
Edward Sharpe & the Magnetic Zeros 

(Up From Below)

Tunes

“We actually wrote this song at Cray for orientation of hires on the 
memory system team.  The’ll never forget where to get information 

about about a line in a directory-based cache coherence scheme.” 
-  Alex Ebert

http://en.wikipedia.org/wiki/Alex_Ebert
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NVIDIA GPUs do not implement cache coherence 
▪ Incoherent per-SMX core L1 caches 
▪ Single, unified L2 cache

Memory (DDR5 DRAM)

Shared L2 Cache

L1 Cache

SMX Core

L1 Cache

SMX Core

L1 Cache

SMX Core

L1 Cache

SMX Core
. . .

CUDA global memory atomic operations “bypass” L1 cache, 
so an atomic operation will always observe up-to-date data 

// this is a read-modify-write performed atomically on the  
// contents of a line in the L2 cache 
atomicAdd(&x,	  1);	  

L1 caches are write-through to L2 by default 

CUDA volatile qualifier will cause compiler to generate a LD 
instruction that will bypass the L1 cache. (see ld.cg or ld.cg 
instruction) 

NVIDIA graphics driver will clear L1 caches between any two 
kernel launches (ensures stores from previous kernel are 
visible to next kernel.  Imagine a case where driver did not 
clear the L1 between kernel launches… 

Kernel launch 1: 
SMX core 0 reads x (so it resides in L1) 
SMX core 1 writes x (updated data available in L2) 

Kernel launch 2: 
SMX core 0 reads x  (cache hit! processor observes stale data)

If interested in more details, see “Cache Operators” section of NVIDIA PTX Manual 
(Section 8.7.6.1 of Parallel Thread Execution ISA Version 4.1)   
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Today: what you should know

▪ What limits the scalability of snooping-based approaches to 
cache coherence? 

▪ How does a directory-based scheme avoid these problems? 

▪ How can the storage overhead of the directory structure be 
reduced? (and at what cost?) 
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Implementing cache coherence

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Memory I/O

The snooping cache coherence 
protocols from the past two lectures 
relied on broadcasting coherence 
information to all processors over the 
chip interconnect. 

Every time a cache miss occurred, the 
triggering cache communicated with 
all other caches!

We discussed what information was communicated and what actions were taken to 
implement the coherence protocol. 

We did not discuss how to implement broadcast. 
(one example is a shared bus)
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Quick demo
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Problem: scaling cache coherence to large machines

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Interconnect

Recall non-uniform memory access (NUMA) shared memory systems (e.g., PSC Blacklight) 

Idea: locating regions of memory near the processors increases scalability: it yields higher 
aggregate bandwidth and reduced latency (especially when there is locality in the application) 

But... efficiency of NUMA system does little good if the coherence protocol can’t also be scaled! 

Consider this case: processor accesses nearby memory (good...), but to ensure coherence still must 
broadcast to all other processors it is doing so (bad...).  

Some terminology: 

▪ cc-NUMA = “cache-coherent, non-uniform memory access” 

▪ Distributed shared memory system (DSM): cache coherent, shared address space, but 
architecture implemented by physically distributed memories
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One possible solution: hierarchical snooping

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Interconnect

Use snooping coherence at each level

Memory

Processor Processor Processor Processor

Interconnect

Processor Processor Processor Processor

Interconnect

Interconnect
Memory Memory

Another example: with memory localized with the groups of processors, rather than centralized 
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One possible solution: hierarchical snooping

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Interconnect

Use snooping coherence at each level

Memory

Advantages 

▪ Relatively simple to build (already have to deal with similar issues due to multi-level caches) 

Disadvantages 

▪ The root of the network can become a bottleneck 

▪ Larger latencies than direct communication 

▪ Does not apply to more general network topologies (meshes, cubes)
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Scalable cache coherence using directories

▪ Snooping schemes broadcast coherence messages to 
determine the state of a line in the other caches 

▪ Alternative idea: avoid broadcast by storing information about 
the status of the line in one place: a “directory” 
- The directory entry for a cache line contains information about the state of the 

cache line in all caches. 
- Caches look up information from the directory as necessary 
- Cache coherence is maintained by point-to-point messages between the caches  

(not by broadcast mechanisms) 
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A very simple directory

Scalable Interconnect

Processor

Local Cache

Directory

Memory

. . 
.

One cache line of memory

One directory entry per 
cache line of memory

P presence bits: indicate whether processor P 
has line in its cache

Dirty bit: indicates line is dirty 
in one of the processors’ caches
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A partitioned directory

Scalable Interconnect

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

▪ “Home node” of a line: node with memory holding the corresponding data for the line 
- Example: node 0 is the home node of the orange line, node 1 is the home node of the blue line 

▪ “Requesting node”: node containing processor requesting line

Directory partition is co-located with memory it describes
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Example 1: read miss to clean line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is not dirty

▪ Read miss message sent to home node of the requested line 

▪ Home directory checks entry for line

1. Request: read miss msg 

Scalable Interconnect
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Example 1: read miss to clean line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is not dirty

▪ Read miss message sent to home node of the requested line 
▪ Home directory checks entry for line 
- If dirty bit for line is OFF, respond with contents from memory, set presence[0] to true 

(to indicate line is cached by processor 0)

2. Response (line of data from memory)

1. Request: read miss msg 

Scalable Interconnect
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Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s cache)

▪ If dirty bit is ON, then data must be sourced by another processor 
▪ Home node must tell requesting node where to find data 
- Responds with message providing identity of line owner (“get it from P2”)  

2. Response: owner id

1. Request: read miss msg

Scalable Interconnect
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Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s cache)

1. If dirty bit is ON, then data must be sourced by another processor 

2. Home node responds with message providing identity of line owner   

3. Requesting node requests data from owner 

4. Owner changes state in cache to SHARED (read only), responds to requesting node

2. Response: owner id

1. Request: read miss msg

3. Request: data
4. Response: data

Scalable Interconnect
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Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s cache)

1. If dirty bit is ON, then data must be sourced by another processor 
2. Home node responds with message providing identity of line owner   
3. Requesting node requests data from owner 
4. Owner responds to requesting node, changes state in cache to SHARED (read only) 
5. Owner also responds to home node, home clears dirty, updates presence bits, updates memory

2. Response: owner id

1. Request: read miss msg

3. Request: data
4. Response: data

5. Response: data+dir revision

Scalable Interconnect
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Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

Scalable Interconnect
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Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

2. Response: sharer ids + data

Scalable Interconnect
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Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)
2. Response: sharer ids + data

Scalable Interconnect
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Example 3: write miss

Scalable Interconnect

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)

2. Response: sharer ids + data

4a. Response: ack from P2

4b. Response: ack from P1

After receiving both invalidation acks, P0 can perform write
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Advantage of directories
▪ On reads, directory tells requesting node exactly where to get 

the line from 
- Either from home node (if the line is clean) 
- Or from the owning node (if the line is dirty) 
- Either way, retrieving data involves only point-to-point communication 

▪ On writes, the advantage of directories depends on the 
number of sharers 
- In the limit, if all caches are sharing data, all caches must be 

communicated with (just like broadcast in a snooping protocol)
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Cache invalidation patterns
64 processor system

Barnes-Hut
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Ocean
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Graphs plot histogram of number 
of sharers of a line at the time of 
a write 

In general only a few processors 
share the line (only a few 
processors must be told of writes) 

Not shown here, but the 
expected number of sharers 
typically increases slowly with P 
(good!) 
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In general, only a few sharers during a write 
▪ Access patterns 

- “Mostly-read” objects: lots of sharers but writes are infrequent, so minimal impact on 
performance (e.g., root node in Barnes-Hut) 

- Migratory objects (one processor reads/writes for while, then another, etc.): very few sharers, 
count does not scale with number of processors  

- Frequently read/written objects: frequent invalidations, but few of them because sharer count 
cannot build up between invalidations (e.g, shared task queue) 

- Low-contention locks: infrequent invalidations, no performance problem 
- High-contention locks: can be a challenge, because many readers present when lock released  

▪ Implication 1: directories are useful for limiting coherence traffic 
- Don’t need a broadcast mechanism to “tell everyone” 

▪ Implication 2: suggests ways to optimize directory implementations 
(reduce storage overhead)
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Full bit vector directory representation
▪ Recall: one presence bit per node 

▪ Storage proportional to P x M 
- P = number of nodes (e.g., processors) 
- M = number of lines in memory 

▪ Storage overhead rises with P 
- Assume 64 byte cache line size (512 bits) 
- 64 nodes (P=64)  →12% overhead  
- 256 nodes (P=256) → 50% overhead 
- 1024 nodes (P=1024) → 200% overhead

. . 
.

P

M

. . .
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Reducing storage overhead of directory
▪ Optimizations on full-bit vector scheme 

- Increase cache line size (reduce M term) 
- What are possible problems with this approach? 

(consider graphs from last lecture) 

- Group multiple processors into a single directory “node” (reduce P term) 
- Need only one directory bit per node, not one bit per processor 
- Hierarchical: could use snooping protocol to maintain coherence among 

processors in a node, directory across nodes 

▪ We will now discuss two alternative schemes 
- Limited pointer schemes (reduce P) 
- Sparse directories (reduce M)
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Limited pointer schemes
Since data is expected to only be in a few caches at once, storage for a limited number 
of pointers per directory entry should be sufficient (only need a list of the nodes 
holding a valid copy of the line!)

Ocean

Example: 1024 processor system 
Full bit vector scheme needs 1024 bits per line 
Instead, can store ~100 pointers to nodes holding the line (log2(1024)=10 bits per pointer) 
In practice, our workload evaluation says we can get by with far less than this
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Managing overflow in limited pointer schemes

▪ Fallback to broadcast (if broadcast mechanism exists) 
- When more than max number of sharers, revert to broadcast 

▪ If no broadcast mechanism present on machine 
- Do not allow more than a max number of sharers 
- On overflow, newest sharer replaces an existing one 

(must invalidate line in the old sharer’s cache) 

▪ Coarse vector fallback 
- Revert to bit vector representation representation 
- Each bit corresponds to K nodes 
- On write, invalidate all nodes a bit corresponds to

Many possible approaches
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Optimizing for the common case
Limited pointer schemes are a great example of smartly 

understanding and optimizing for the common case:

1. Workload-driven observation: in general the number of cache line sharers is low 

2. Make the common case simple and fast: array of pointers for first N sharers 

3. Uncommon case is still handled correctly, just with a slower, more complicated 
mechanism (the program still works!) 

4. Extra expense of the complicated solution is tolerable, since it happens 
infrequently
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Limited pointer schemes: summary
▪ Limited pointer schemes reduce directory 

storage overhead caused by large P 
- By adopting a compact representation of a list of sharers 

▪ But do we really even need to maintain storage 
for a list for each cache-line chunk of data in 
memory?

. . 
.

P

M

. . .

Directory
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Limiting size of directory: sparse directories

▪ Key observation:  the majority of memory is NOT resident in 
cache.  And to carry out coherence protocol the system only 
needs sharing information for lines that are currently in cache 
- Most directory entries are empty most of the time 
- 1 MB cache, 1 GB memory per node → 99.9% of directory entries are idle
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Sparse directories
Directory at home node maintains pointer to only one node 
caching line (not a list of sharers) 
Pointer to next node in list is stored as extra information in 
the cache line  (just like the line’s tag, dirty bits, etc)

. . 
.M

Processor cache: node 0 
(last reader)

prev ptr

line data

Directory (home node for line)

Processor cache: node 1

next ptr

Processor cache: node 2 
(last reader)

On read miss: add requesting node to head of list

On write miss: propagate invalidations along list 
On evict: need to patch up list (linked list removal)
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Sparse directories: scaling properties
Good:  

- Low memory storage overhead (one pointer to list head per line) 
- Additional directory storage is proportional to cache size (the list 

stored in SRAM) 
- Traffic on write is still proportional to number of sharers

. . 
.M

Processor cache: node 0

prev ptr

line data

Directory (home node for line)

Processor cache: node 1

next ptr

Processor cache: node 2

Bad:  
- Latency of write proportional to number of sharers 

(invalidation of lines is serial) 
- Higher implementation complexity
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Recall: write miss in full bit vector scheme 

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)
2. Response: sharer ids + data

Original bit-vector scheme sends same number of invalidation messages 
as sparse directory approach, but invalidation messages can be sent to 

all processors in parallel 

Scalable Interconnect
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Optimizing directory-based coherence

▪ Reducing storage overhead of directory data structure 
- Limited pointer schemes 
- Sparse directories 

▪ Reducing number of messages sent to implement 
coherence protocol
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Memory

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache)

1. Request: read miss msg

Recall: read miss to dirty line

Scalable Interconnect
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Memory

Recall: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache) 
(Note: figure below shows final state of system after operation is complete)

Five network transactions in total 
Four of the transactions are on the “critical path” (transactions 4 and 5 can be done in parallel) 

- Critical path: sequence of dependent operations that must occur to complete operation

2. Response: owner id

1. Request: read miss msg

3. Request: data
4. Response: data

5. Response: data+dir revision

Scalable Interconnect
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Memory

Intervention forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache)

1. Request: read miss msg

Scalable Interconnect
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Memory

Intervention forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache)

1. Request: read miss msg

3. Response: data+dir revision

2. Request: intervention read

2. Home node requests data from owner node (processor 2) 
3. Owning node responds

Scalable Interconnect
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Memory

Intervention forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache)

1. Request: read miss msg

3. Response: data+dir revision

2. Request: intervention read

4. Response: data

4. Home node updates directory, and responds to requesting node with data
Four network transactions in total (less traffic) 
But all four of the transactions are on the “critical path.”          Can we do better?

Scalable Interconnect
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Memory

Request forwarding

Processor 0
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Directory
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Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache)

1. Request: read miss msg

Scalable Interconnect
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Memory

Request forwarding

Processor 0
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Memory

Directory

. . .

Processor 1
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Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache)

1. Request: read miss msg 2. Request: send data to requestor

Scalable Interconnect
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Memory

Request forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s cache)

1. Request: read miss msg 2. Request: send data to requestor

3/4. Response: data 
(2 msgs: sent to both home node and requestor)

Four network transactions in total 
Only three of the transactions are on the critical path (transactions 3 and 4 can be done in parallel) 
Note: system is no longer pure request/response (since P0 sent request to P1, but receives response from P2)

Scalable Interconnect
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Summary: directory-based coherence
▪ Primary observation: broadcast doesn’t scale, but luckily we don’t 

need to broadcast to ensure coherence because often the number 
of caches containing a copy of a line is small 

▪ Instead of snooping, just store the list of sharers in a “directory” 
and check the list as necessary 

▪  One challenge: reducing overhead of directory storage 
- Use hierarchies of processors or larger line sizes  
- Limited pointer schemes: exploit fact the most processors not sharing line 
- Sparse directory schemes: exploit fact that most lines are not in cache 

▪ Another challenge: reducing the number of messages sent (traffic) 
and critical path (latency) of message chains needed to implement 
coherence operations
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Directory coherence in Intel Core i7 CPU
▪ Centralized directory for all lines 

in the L3 cache 
(note importance of inclusion property) 

▪ Directory maintains list of L2 
caches containing line  

▪ Instead of broadcasting 
coherence traffic to all L2’s, only 
send coherence messages to L2’s 
that contain the line 
(Core i7 interconnect is a ring, it is not a bus) 

▪ Directory dimensions: 
- P=4 
- M = number of L3 cache lines 

Core

L1 Data Cache

L2 Cache

Shared L3 Cache 
(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache


