CMU 15-418/618: Parallel Computer Architecture and Programming
Practice Exercise 1

A Task Queue on a Multi-Core, Multi-Threaded CPU

The figure below shows a simple single-core CPU with an 16 KB L1 cache and execution contexts for up
to two threads of control. Core 1 executes threads assigned to contexts T0-T1 in an interleaved fashion
by switching the active thread only on a memory stall); Memory bandwidth is infinitely high in this
system, but memory latency is 60 clocks. A cache hit is only 1 cycle. A cache line is 4 bytes. The cache
implements a least-recently used (LRU) replacement policy.

to memory

16 KB L1 cache

Core 1

TO || TI

You are implementing a task queue for a system with this CPU. The task queue is responsible for executing
large batches of independent tasks that are created as a part of a bulk launch (much like how an ISPC
task launch creates many independent tasks). You implement your task system using a pool of worker
threads, all of which are spawned at program launch. When tasks are added to the task queue, the
worker thrads grab the next task in the queue by atomically incrementing a shared counter next_task_id.
Pseudocode for the execution of a worker thread is shown below.

mutex queue_lock;

int next_task_id; // set to zero at time of bulk task launch

int total_tasks; // set to total number of tasks at time of bulk task launch
intx task_args[MAX_NUM_TASKS]; // initialized elsewhere

while (1) {
int my_task_id;
LOCK(queue_lock) ;
my_task_id = next_task_id++;
UNLOCK (queue_lock) ;
if (my_task_id < total_tasks)
TASK_A(my_task_id, task_args[my_task_id]);

else
break;

Page 1

A. (3 pts) Consider one possible implementation of TASK_A from the code on the previous page:
function TASK_A(int task_id, intx X) {
for (int i=0; i<1000; i++) {
for (int j=0; j<1536; j++) {
load X[j] // assume this is a cold miss when i=0
// ... 20 non-memory instructions using X

}
}

The inner loop of TASK_A scans over 6 KB of elements of array X, performing 20 arithmetic instruc-
tions after each load. This process is repeated over the same data 1000 times. Assume there are no
other significant memory instructions in the program and that each task works on a completely
different input array X (there is no sharing of data across tasks). Remember the cache is 16 KB,
a cache line is 4 bytes, and the cache implements a LRU replacement policy. Assume the CPU
performs no prefetching.

In order to process a bulk launch of TASK_A, you create two worker threads, WT0 and WT1, and as-
sign them to CPU execution contexts TO and T1. Do you expect the program to execute substantially
faster using the two-thread worker pool than if only one worker thread was used? Why or why not?

(Careful: please consider the program’s execution behavior on average over the entire program’s execution
(“steady state” behavior). Past students have been tricked by only thinking about the behavior of the first loop
iteration of the first task.) It may be helpful to draw when threads are running and stalled waiting for a load
on the diagram below.

TO

T1

Time
(clocks)

Page 2

B. (3 pts) Now consider the case where the L1 cache size is changed to 4 KB. (Keep in mind different
tasks operate on different data.) When running the program from part A on this new machine,
do you expect your two-thread worker pool to execute the program substantially faster than a one
thread pool? If so, please calculate how much faster (your answer need not be exact, a back-of-the
envelop calculation is fine). If not, explain why.

TO

T1

Time
(clocks)

C. (3 pts) Now consider the case where the L1 cache size is changed to 8 KB. Assuming you cannot
change the implementation of TASK_A how should your system schedule tasks to improve program
performance by nearly a factor of two over the two-worker pool approach? Why does this improve
performance?

Page 3

Now consider the case where the task system is running programs on a dual-core processor. Each
core is two-way multi-threaded, so there are a total of four execution contexts (T0-T3). Each core

has a 16 KB cache.

to memory

16 KB L1 cache

16 KB L1 cache

Core 1

TO || T1

Core 2
Exec

T2 || T3

D. (3 pts) If you maintain your two-worker thread implementation of the task system as discussed in
prior questions, to which execution contexts do you assign the two worker threads WT0 and WT1?
Why? Given your assignment, how much better performance do you expect than if your worker

pool contained only one thread?

Page 4

E. (3 pts) Imagine you are requested to design a tasking system that maximizes the dual-core proces-
sor’s overall throughput (in terms of tasks completed) when running bulk launches of TASK_A. How
many worker threads do you create? Why?

F. (3 pts) Imagine you are requested to design a tasking system that minimizes start-to-end latency of
any one single task in a bulk launch of TASK_A. How many worker threads do you create? Why?

G. (2 pts) Imagine you are requested to design a tasking system that minimizes start-to-end latency of
an entire bulk launch of many instances of TASK_A. How many worker threads do you create? Why?

Page 5

