
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2016

Lecture 1:

Why Parallelism?
Why Efficiency?

 CMU 15-418/618, Spring 2016

Tunes

Leela James
“Long Time Coming”

(A Change is Gonna Come)
“I’d heard about parallelism in 213. And they kept telling me about in 210. And so I
was really excited when got the chance to roll up my sleeves and tune some parallel

code for a bunch of cores.”
- Leela James, on the inspiration for “Long Time Coming”

 CMU 15-418/618, Spring 2016

Hi!

Prof. Kayvon

Greg

Karima

Josh

Kevin

Oguz

Prof. Bryant

 CMU 15-418/618, Spring 2016

One common definition

A parallel computer is a collection of processing elements
that cooperate to solve problems quickly

We care about performance *
We care about efficiency

We’re going to use multiple
processors to get it

* Note: different motivation from “concurrent programming” using pthreads in 15-213

 CMU 15-418/618, Spring 2016

DEMO 1
(15-418 Spring 2016‘s first parallel program)

 CMU 15-418/618, Spring 2016

Speedup
One major motivation of using parallel processing: achieve a speedup

For a given problem:

speedup(using P processors) =
execution time (using 1 processor)

execution time (using P processors)

 CMU 15-418/618, Spring 2016

Class observations from demo 1

▪ Communication limited the maximum speedup achieved
- In the demo, the communication was telling each other the partial sums

▪ Minimizing the cost of communication improved speedup
- Moved students (“processors”) closer together (or let them shout)

 CMU 15-418/618, Spring 2016

DEMO 2
(scaling up to four “processors”)

 CMU 15-418/618, Spring 2016

Class observations from demo 2

▪ Imbalance in work assignment limited speedup
- Some students (“processors”) ran out work to do (went idle),

while others were still working on their assigned task

▪ Improving the distribution of work improved speedup

 CMU 15-418/618, Spring 2016

DEMO 3
(massively parallel execution)

 CMU 15-418/618, Spring 2016

Class observations from demo 3

▪ The problem I just gave you has a significant amount of
communication compared to computation

▪ Communication costs can dominate a parallel
computation, severely limiting speedup

 CMU 15-418/618, Spring 2016

Course theme 1:
Designing and writing parallel programs ... that scale!

▪ Parallel thinking
1. Decomposing work into pieces that can safely be performed in parallel
2. Assigning work to processors
3. Managing communication/synchronization between the processors so

that it does not limit speedup

▪ Abstractions/mechanisms for performing the above tasks
- Writing code in popular parallel programming languages

 CMU 15-418/618, Spring 2016

Course theme 2:
Parallel computer hardware implementation: how parallel
computers work

▪ Mechanisms used to implement abstractions efficiently
- Performance characteristics of implementations
- Design trade-offs: performance vs. convenience vs. cost

▪ Why do I need to know about hardware?
- Because the characteristics of the machine really matter

(recall speed of communication issues in earlier demos)
- Because you care about efficiency and performance

(you are writing parallel programs after all!)

 CMU 15-418/618, Spring 2016

Course theme 3:
Thinking about efficiency

▪ FAST != EFFICIENT

▪ Just because your program runs faster on a parallel computer, it does
not mean it is using the hardware efficiently
- Is 2x speedup on computer with 10 processors a good result?

▪ Programmer’s perspective: make use of provided machine capabilities

▪ HW designer’s perspective: choosing the right capabilities to put in
system (performance/cost, cost = silicon area?, power?, etc.)

 CMU 15-418/618, Spring 2016

Course logistics

 CMU 15-418/618, Spring 2016

Getting started
▪ Create an account on the course web site

- http://15418.courses.cs.cmu.edu

▪ Sign up for the course on Piazza
- http://piazza.com/cmu/spring2016/15418618/home

▪ Textbook
- There is no course textbook, but please see web site for suggested references

 CMU 15-418/618, Spring 2016

Commenting and contributing to lectures
▪ We have no textbook for this class and so the lecture slides are

the primary course reference

 CMU 15-418/618, Spring 2016

Participation requirement (comments)
▪ You are required to submit one well-thought-out comment

per lecture (only two comments per week)

▪ It counts if you answer a TA’s question if randomly prompted:
- My TAs will be randomly seeding the site with questions

(and asking specific students to respond!)

▪ Why do we write?
- Because writing is a way many good architects and systems

designers force themselves to think (explaining clearly and
thinking clearly are highly correlated!)

 CMU 15-418/618, Spring 2016

What we are looking for in comments
▪ Try to explain the slide (as if you were trying to teach your classmate while

studying for an exam)
- “Kayvon said this, but if you think about it this way instead it makes much more sense... ”

▪ Explain what is confusing to you:
- “What I’m totally confused by here was...”

▪ Challenge classmates with a question
- For example, make up a question you think might be on an exam.

▪ Provide a link to an alternate explanation
- “This site has a really good description of how multi-threading works...”

▪ Mention real-world examples
- For example, describe all the parallel hardware components in the XBox One

▪ Constructively respond to another student’s comment or question
- “@segfault21, are you sure that is correct? I thought that Kayvon said...”

▪ It is OKAY (and even encouraged) to address the same topic (or repeat
someone else’s summary, explanation or idea) in your own words
- “@funkysenior16’s point is that the overhead of communication...”

 CMU 15-418/618, Spring 2016

Quizzes
▪ Every two-weeks ON THURSDAY we will have a take-home quiz

- You must complete the quiz on your own
- Distributed Wednesday night, due 10:00am on Friday
- We will grade your work to give you feedback, but only a

participation grade will go into the gradebook

 CMU 15-418/618, Spring 2016

Assignments
▪ Four programming assignments

- First assignment is done individually, the rest may be done in pairs
- Each uses a different parallel programming environment

Assignment 1: ISPC programming on
Intel quad-core CPU (and Xeon Phi)

Assignment 2: CUDA
programming on NVIDIA GPUs

Assignment 3: to be announced (but
will involve many-core programming

on Xeon Phis)

Assignment 4: Create an
elastic web server that

scales with load

 CMU 15-418/618, Spring 2016

Final project
▪ 6-week self-selected final project
▪ May be completed in pairs
▪ Start thinking about your project ideas TODAY!
▪ Announcing: the FIFTH annual 418 parallelism competition!

- Held during the final exam slot
- Non-CMU judges... (previous years: from Intel, Apple, NVIDIA)
- Expect non-trivial prizes... (e.g., high-end GPUs, drones, iPads, solid state disks)

and most importantly fame, glory, and respect from your peers.

 CMU 15-418/618, Spring 2016

Check out last year’s projects!

http://15418.courses.cs.cmu.edu/spring2015/competition

 CMU 15-418/618, Spring 2016

Grades

39% Programming assignments (4)
28% Exams (2)
28% Final project
5% Participation (quizzes and lecture comments)

Each student (or group) gets up to five late days on programming
assignments (see web site for details)

 CMU 15-418/618, Spring 2016

Why parallelism?

 CMU 15-418/618, Spring 2016

Why parallel processing?
▪ The answer 10-15 years ago

- To realize performance improvements that exceeded what CPU performance improvements could provide

- Because if you just waited until next year, your application would run faster on a new CPU

▪ Implication: working to parallelize your code was often not worth the time
- Software developer does nothing: CPU performance doubles ~ every 18 months. Woot!

Year

R
el

at
iv

e
C

PU
 P

er
fo

rm
an

ce

Image credit: Olukutun and Hammond, ACM Queue 2005

 CMU 15-418/618, Spring 2016

Until 10 years ago: two significant reasons
for processor performance improvement

1. Increasing clock frequency

2. Exploiting instruction-level parallelism (superscalar execution)

 CMU 15-418/618, Spring 2016

Review: what is a program?
From a processor’s perspective,
a program is a sequence of
instructions.

 CMU 15-418/618, Spring 2016

Review: what does a processor do?
It runs programs!

Execute instruction referenced
by the program counter (PC)
(executing the instruction will modify
machine state: contents of registers,
memory, CPU state, etc.)

Move to next instruction …

Then execute it…

And so on…

PC

 CMU 15-418/618, Spring 2016

Instruction level parallelism (ILP)
▪ Processors did in fact leverage parallel execution to make

programs run faster, it was just invisible to the programmer

▪ Instruction level parallelism (ILP)
- Idea: Instructions must appear to be executed in

program order. BUT independent instructions
can be executed simultaneously by a processor
without impacting program correctness

- Superscalar execution: processor dynamically
finds independent instructions in an instruction
sequence and executes them in parallel

mul	
 	
 r1,	
 r0,	
 r0
mul	
 	
 r1,	
 r1,	
 r1
st	
 	
 	
 r1,	
 mem[r2]	
 	

...	

add	
 	
 r0,	
 r0,	
 r3	
 	

add	
 	
 r1,	
 r4,	
 r5	
 	

...
...

Independent instructions

Dependent instructions

 CMU 15-418/618, Spring 2016

ILP example
a = x*x + y*y + z*z

x

+

a

+

ILP = 3

ILP = 1

ILP = 1

x

*

y y

*

z z

*

 CMU 15-418/618, Spring 2016

Diminishing returns of superscalar execution

0

1

2

3

0 4 8 12 16

Instruction issue capability of processor (instructions/clock)

Sp
ee

du
p

Most available ILP is exploited by a processor capable of issuing four instructions per clock
(Little performance benefit from building a processing that can issue more)

Source: Culler & Singh (data from Johnson 1991)

 CMU 15-418/618, Spring 2016

ILP tapped out + end of frequency scaling

No further benefit from ILP

Processor clock rate stops
increasing

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

= Transistor density
= Clock frequency

= Instruction-level parallelism (ILP)
= Power

 CMU 15-418/618, Spring 2016

The “power wall”

Dynamic power capacitive load × voltage2 × frequency
Static power: transistors burn power even when inactive due to leakage

Power consumed by a transistor:

High power = high heat
Power is a critical design constraint in modern processors

Intel Core i7 2700K (fast desktop CPU): 95W
Intel Core i7 (in this laptop): 45W

NVIDIA GTX 780 GPU 250W

TDP

Standard microwave oven 700W

Mobile phone processor 1/2 - 2W
World’s fastest supercomputer megawatts

Source: Intel, NVIDIA, Wikipedia, Top500.org

∝

 CMU 15-418/618, Spring 2016

Power draw as a function of frequency
Dynamic power capacitive load × voltage2 × frequency
Static power: transistors burn power even when inactive due to leakage
Maximum allowed frequency determined by processor’s core voltage

∝

Image credit: “Idontcare”: posted at: http://forums.anandtech.com/showthread.php?t=2281195

 CMU 15-418/618, Spring 2016

Single-core performance scaling
The rate of single-instruction stream
performance scaling has decreased
(almost to zero)

1. Frequency scaling limited by power
2. ILP scaling tapped out

Architects are now building faster
processors by adding more execution
units that run in parallel.

Software must be written to be parallel
to see performance gains. No more free
lunch for software developers!

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

= Transistor density
= Clock frequency

= ILP
= Power

 CMU 15-418/618, Spring 2016

Recap: why parallelism?

▪ The answer 15 years ago
- To realize performance improvements that exceeded what CPU performance

improvements could provide
(specifically, in the early 2000‘s, what clock frequency scaling could provide)

- Because if you just waited until next year, your code would run faster on the
next generation CPU

▪ The answer today:
- Because it is the primary way to achieve significantly higher application

performance for the foreseeable future *

* We’ll revisit this comment later in the heterogeneous processing lecture

 CMU 15-418/618, Spring 2016

Intel Skylake (2015)
Quad-core CPU + multi-core GPU integrated on one chip

(aka “6th generation Core i7”)

CPU
core

CPU
core

CPU
core

CPU
core

Integrated GPU

 CMU 15-418/618, Spring 2016

Intel Xeon Phi 7120A “coprocessor”
▪ 61 “simple” x86 cores (1.3 Ghz, derived from Pentium)
▪ Targeted as an accelerator for supercomputing applications

 CMU 15-418/618, Spring 2016

NVIDIA Maxwell GTX 980 GPU (2014)
Sixteen major processing blocks
(but much, much more parallelism available... details coming next class)

 CMU 15-418/618, Spring 2016

Mobile parallel processing
Power constraints heavily influence design of mobile systems

NVIDIA Tegra K1:
Quad-core ARM A57 CPU + 4 ARM A53 CPUs +

NVIDIA GPU + image processor...

Apple A9: (in iPhone 6s)
Dual-core CPU + GPU + image processor

and more on one chip

 CMU 15-418/618, Spring 2016

Supercomputing
▪ Today: clusters of multi-core CPUs + GPUs
▪ Oak Ridge National Laboratory: Titan (#2 supercomputer in world)

- 18,688 x 16 core AMD CPUs + 18,688 NVIDIA K20X GPUs

 CMU 15-418/618, Spring 2016

Summary
▪ Today, single-thread-of-control performance is improving very

slowly
- To run programs significantly faster, programs must utilize multiple

processing elements
- Which means you need to know how to write parallel code

▪ Writing parallel programs can be challenging
- Requires problem partitioning, communication, synchronization
- Knowledge of machine characteristics is important

▪ I suspect you will find that modern computers have tremendously
more processing power than you might realize, if you just use it!

▪ Welcome to 15-418!

