Lecture 15:

Interconnection
Networks

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2016

Credit: some slides created by Michael Papamichael, others based on slides from Onur Mutlu’s 18-742

Tep No

Last Ones Standing

“The last ones standing will be stuck in the latedays queue, so the TAs are offering
cookies to early finishers.”

(Serious note: It would be great if some students can plan to finish early to spread
out the load.)

(MU 15-418/618, Spring 2016

THE DEAL

The Exam 1 Deal

B No exam 1 solutions will be distributed at this time

m You have the opportunity to redo up to 2 questions (of your
choosing) from the exam, on your own time.
- You may discuss the problems with your classmates, instructor, and TAs.
- You must write your solutions on your own.

- You will get 50% credit for lost points on regraded questions.
= This must be handed in by Friday, April 8th

But... there’s a catch!

The Catch

You must hand in your solution to the course staff at a
designated office hours.

And you are not allowed to hand in unless you are able to
successfully answer a series of questions we ask you

The questions will a subset of the questions on exam 1
(or simple follow up variants)

The staff will post times to sign up for 6-minute time slots

(MU 15-418/618, Spring 2016

Basic system design from previous lectures

Processor Processor

Bus
Arbitrator

Interconnect (shared bus)

Bus clients (interconnect nodes)

Bus interconnect: ——— Request bus:
e.g., 40 bits cmd + address

All nodes connected by a shared

set of wires I,

e.g., 256 bits
I Response tag

3 bits
(MU 15-418/618, Spring 2016

Today: modern interconnect designs

Processor

Processor

—

</

————

Interconnection Network

> /

InterCOHHECt nOdes
Memory

Today’s topics: the basic ideas of building a high-performance

interconnection network in a parallel processor.

(think: “a network-on-a-chip”)

(MU 15-418/618, Spring 2016

What are interconnection networks used for?

To connect:

Processor cores with other cores
Processors and memories
Processor cores and caches
Caches and caches

/0 devices

(MU 15-418/618, Spring 2016

Why is the design of the interconnection
network important?

m System scalability

- How large of a system can be built?

- How easy is it to add more nodes (e.g., cores)

m System performance and energy efficiency

- How fast can cores, caches, memory communicate
- How long is latency to memory?

- How much energy is spent on communication?

(MU 15-418/618, Spring 2016

With increasing core counts...

Scalability of on-chip interconnection network becomes increasingly important

9
trolle

Tegra K1: 4 + 1 ARM cores + GPU cores
(MU 15-418/618, Spring 2016

Intel Xeon Phi (72-core x86)

Interconnect terminology

(MU 15-418/618, Spring 2016

Terminology

m Network node: a network endpoint connected to a router/switch
- Examples: processor caches, the memory controller

B Network interface:
- Connects nodes to the network

m Switch/router:
- Connects a fixed number of input links to a fixed number of output links

m Link:

Network interface
= Abundle of wires carrying a signal

_.- Switch

-
-
| 4
-
-
"
-

(MU 15-418/618, Spring 2016

Design issues

m Topology: how switches are connected via links

- Affects routing, throughput, latency, complexity/cost of
implementation

%OQG’QQO?
$588358%

m Routing: how a message gets from its source to its destination in
the network

- (an be static (messages take a predetermined path) or adaptive based on load

m Buffering and flow control

- What data is stored in the network? packets, partial packets? etc.

- How does the network manage buffer space?

(MU 15-418/618, Spring 2016

Properties of interconnect topology

m Routing distance
= Number of links (“hops”) along a route between two nodes

m Diameter: the maximum routing distance

m Average distance: average routing distance over all valid routes

e_@_a_a@
jameer=6 o] O] O] ©
el el el @
el el el e

(MU 15-418/618, Spring 2016

Properties of interconnect topology

m Direct vs. indirect networks
- Direct network: endpoints sit “inside” the network

- e.g., mesh is direct network: every node is both an endpoint and a switch

Q_Q_Q
al al @ 30
ol al @ e B0
ol al @ O
B0
- _pO
Q ~$Q
QL Ol O /.'O
ol ¢ 20

Direct network Indirect network

(MU 15-418/618, Spring 2016

Properties of an interconnect topology

m Bisection bandwidth:
- Common metric of performance for recursive topologies

= Cut network in half, sum bandwidth of all severed links
- Warning: can be misleading as it does not account for switch and routing efficiencies

m Blocking vs. non-blocking:

- If connecting any pairing of nodes is possible, network is non-blocking (otherwise,
it’s blocking)

(MU 15-418/618, Spring 2016

Example: blocking vs. non-blocking

m |s this network blocking or non-blocking?
= Consider simultaneous messages from 0-to-1 and 3-to-7.

= Consider simultaneous messages from 1-to-6 and 3-to-7. Blocking!!!

©
0
8
=Y

Note: in this network illustration, each node is drawn Conflict
twice for clarity (at left and at right) CMU 15-418/618, Spring 2016

$885858%

Load-latency behavior of network

General rule: latency increases with load (throughput)

Zero load or

idle latency

(topology-+routing
+flow control)

Min latency given by
routing algorithm

Min latency given by
topology

Saturation throughput
(given by flow control)

Throughput
given by
routing

Throughput given
by topology

Load - Offered Traffic (bits/sec)

(MU 15-418/618, Spring 2016

Interconnect topologies

(MU 15-418/618, Spring 2016

Many possible network topologies

Bus
Crosshar
Ring

Tree
Omega
Hypercube
Mesh
Torus
Butterfly

(MU 15-418/618, Spring 2016

Bus interconnect

m Good:
- Simple design
- (ost effective for a small number of nodes
- Easy to implement coherence (via snooping)

m Bad:

- Contention: all nodes contend for shared bus

- Limited bandwidth: all nodes communicate over same wires (one
communication at a time)

- High electrical load = low frequency, high power

PPPP®

(MU 15-418/618, Spring 2016

Crossbar interconnect

® Every node is connected to every
other node (non-blocking, indirect)

2

m Good:
- 0(1) latency and high bandwidth

7\ 7\ 7\ 7\ 7\ 7\ e
/ | | | YV / \)

m Bad:

- Not scalable: O(N2) switches

- High cost

- Difficult to arbitrate at scale
A

Crossbar scheduling algorithms / efficient hardware
implementations are still active research areas.

7\
|
O 0O O O O O O f)
\ / \ \ \ | \ S
0O 0O 0O 0O 0O 0O 0O r)
g ¢/ ¢/ g g g ¢/ N\
)))) 0O) 0 /)
V/ / / V/ ¢/ </ | S
))))) 0O /)
/ Y/ ¢/) Y Y S
O O O O O O O f)
N7 N7 N7 N7 N7 Ny NS NS
O 0O O O O O 0O f)
\ G/ \ \ \ Y/ \ 8
O 0O O O O O O O
\ \ \ \ \ \ \

QOOWOO®OEO®

Note: in this network illustration, each node is drawn twice for clarity (at left and at top)

8-node crosshar network (N=8)

(MU 15-418/618, Spring 2016

Crossbar interconnect

(Here is a more verbose illustration than that on previous slide)

0 1 2 3 4 5 6 7
7\ 77\ 7\ 7\ 7\ 7\ 7\ Ve

—@ O O O O O O O O
N\ 7~ \ 77\ 77\ 7~ \ 77\ 7\ Va

1 O O O O O O O O

G\ £\ £\ £\ £\ £\ £\ £\ /)
U ./ ./ U/ ./ ./ U/ ./ A

/é\ £\ £\ £\ £\ £\ £\ £\ /)
U \ W/ \ \ \) \ / A\

q\ £\ £\ £\ £\ £\ £\ £\ /)
u \/ \ \ \ \ \ U/ \

G\ £\ o M\ £\ M\ M\ £\ f)
U \/ ./ G/ W/ ./ G/ W/ \

/é\ £\ £\ £\ £\ £\ £\ £\ /)
U \/ \ \ \ \ \ U/ \

G\ £\ £\ £\ £\ £\ £\ £\ O

v U/ U/ U/ U/ \ U/ U/

(MU 15-418/618, Spring 2016

Crossbhars were used in recent multi-core
processing from Oracle (previously Sun)

-

T
SR
Goalls ol

ll' =
il S

R TRE
<k "SME VN L - P
g v | 7.

a Nean s FanistraerFun s Iras P |

Tl

A pabiey L g e
Praet 3

.—" ,.<".,
-

1 [T |
AR NE A AR
- N el ey o e N e
Lt T
Heatehione
e e

I ERE N
 AlE Ak

S T g g g g T e g ey 7 g g ey T [S [Sy T [Sy g g e Sy

o ot 8 . Bt B Bt

——
SRS 2| e
afls ' u 1 rSET
AR o Famendr i

ol e) s
)

o ok L ob

-BR- ! B ‘oo
‘.u on AN oo
Fapentrane® s W S0,

Lol

T TR LT TR T T T T
1 L IRl PR HEY PR SRR SRR T RE ST R DRI DR Eied
il - Bn oull B el © B vl B mell B ol z) - - <

. SSPARC|SPAP
| C.ore@%% ool | os =l Gore | "ore.

= o sy g vy

5'. -
a¥ls an

i ok L obe]

Coherence

T .a.. o n
DR TNy A

T Bl
Wl s

e s LSS Tl N iNue il oY PN T . “' R Ia T s wlar Eoles volue soles s 5w
T e o e e e 1' gE_;,t; .g”“ ST o

Sun SPARC 12 (8 cores, 8 L2 cache banks) Oracle SPARCTS5 (16 cores, 8 L3 cache banks)

Note that crossbhar (CCX) occupies about the same chip area as a core

(MU 15-418/618, Spring 2016

Ring

® Good:
- Simple
= Cheap: O(N) cost

m Bad:
- High latency: O(N)
- Bisection bandwidth remains constant as
nodes are added (scalability issue)

B Used in recent Intel architectures
- Corei?

© o e

B Also used in IBM CELL Broadband Engine (9 cores)

(MU 15-418/618, Spring 2016

Intel’s ring interconnect

Introduced in Sandy Bridge microarchitecture

)

L3 cachesslice
(2 MB)

L3 cacheslice
(2 MB)

L3 cache slice
(2 MB)

L3 cachesslice
(2 MB)

=
.

=

System Agent

Graphics

Four rings

— request

— shoop

— ack

— data (32 bytes)

Six interconnect nodes: four
“slices” of L3 cache + system
agent + graphics

Each bank of L3 connected to
ring bus twice

Theoretical peak BW from
cores to L3 at 3.4 GHz s
approx. 435 GB/sec

— When each core is accessing its

local slice
(MU 15-418/618, Spring 2016

Mesh

B Direct network

B Echoes locality in grid-based applications
®m O(N) cost

B Average latency: O(sqrt(N))

m Easy to lay out on chip: fixed-length links

m Path diversity: many ways for message to
travel from one node to another
m Used by:
- Tilera processors
- Prototype Intel chips

Q

Q

Q

Q

Q
Q

10 10 [O [0 [O

Q_Q_Q

Ql QL Ql Q1 Q

Ql Ql Q

QlL QL Q

Q

Ql Ol O] Ol O O
el Ol Gl Gl QO

2D Mesh

(MU 15-418/618, Spring 2016

Xeon Phi (Knights

m 72 cores, arranged as 6 X 6 mesh
of tiles (2 cores/tile)

®m YXrouting of messages:

- MoveinY
- llTurnll
- MoveinX

DDR

MCDRAM MCDRAM
T
EDC EDC
#1: Tile i
f: Tile T

L e
Tile
. e
Tile

e

EDC

h 4

A

MCDRAM

Tile

EDC

MCDRAM

PCle

MCDRAM

MCDRAM

v

Tile

EDC

——
Tile
— I
Tile

:’—_

Tile

Tile Tile

Tile Tile Tile Tile

— > — N
Tile Tile Tile Tile

Tile Tile Tile Tile
:’—< >—<::’—_
Misc EDC EDC

h 4
MCDRAM MCDRAM

(MU 15-418/618, Spring 2016

DDR

Torus

m Characteristics of mesh topology are different
based on whether node is near edge or middle
of network (torus topology introduces new
links to avoid this problem)

® Still O(N) cost, but higher cost than 2D grid

B Higher path diversity and bisection BW than
mesh

o110 | LO|LO
|10 10|10
O 110 | 1O]| 1O

B Higher complexity

- Difficult to layout on chip

= Unequal link lengths

2D Torus

(MU 15-418/618, Spring 2016

Trees

B Planar, hierarchical topology
® Like mesh/torus, good when traffic has locality
m Latency: O(lg N)

B Use“fat trees” to alleviate root bandwidth problem (higher bandwidth links near root)

O 60 @
(0 90 @

G 0@ @
9 ORC @ 00 @60 @6 O@

H-Tree Fat Tree

(MU 15-418/618, Spring 2016

Hypercube

m Low latency: O(lg N)

m Radix: O(Ig N)
B Number of links O(N Ig N) @
o oo ﬂ
0-D 1-D 2-D 3-D 4-D

1101 1111
110 /
4110
010 14—
//
010 110 P 001 71011
® 6D hypercube used in 64-core // / 10
Cosmic Cube computer developed 00 00
at Caltech in the 80s
0000 0010

® 5GI Origin used a hypercube

(MU 15-418/618, Spring 2016

Multi-stage logarithmic

Indirect network with multiple switches between terminals
B Cost:O(NIgN)
m Latency: O(lg N)

B Many variations: Omega, butterfly, Clos networks, etc...

000 °
oor (1)
010 a
o (3)
100 0‘
101 e
0 (6
111 @/

000

001

010

011

100

101

110

35353533

111

Omega Network .
(MU 15-418/618, Spring 2016

Review: network topologies

Topology
Direct/Indirect

Blocking/
Non-blocking

Cost

Latency

—O—O0—

I
I
]
<>I
I
l
I

dddaa:

D)
9)
9
O—O0—0O
D)
D)

Riitiiil

Crosshar

Indirect

Non-blocking

O(N?)
0(1)

©__

B
-0
5

O

$883358%

&

Multi-stage log.

Indirect

Blocking

(one discussed in class

is, others are not)

0(NIg N)
0(Ig N)

Mesh

Direct

Blocking

O(N)
O(sqrt(N))

(average)

(MU 15-418/618, Spring 2016

Buffering and flow control

(MU 15-418/618, Spring 2016

Circuit switching vs. packet switching

m (Circuit switching sets up a full path (acquires all resources)
between sender and receiver prior to sending a message

- Establish route (reserve links) then send all data for message

i

- Higher bandwidth transmission (no per-packet link mgmt overhead)

|
N /v," ////./N il |\._\'\\\:

7
~5)
C3

]
S B
]
» -..
sl s
ES
k3 N -
o ..\
SN
< > 5
| e
N
) R

- Does incur overhead to set up/tear down path

- S ."‘ /

- Reserving links can result in low utilization

m Packet switching makes routing decisions per packet

- Route each packet individually (possibly over different network links)

- Opportunity to use link for a packet whenever link is idle

- Overhead due to dynamic switching logic during transmission

- No setup/tear down overhead

(MU 15-418/618, Spring 2016

Granularity of communication

B Message

- Unit of transfer between network clients (e.g., cores, memory)
- (Can be transmitted using many packets

B Packet

= Unit of transfer for network
- (Can be transmitted using multiple flits (will discuss later)

m Flit (flow control digit)

- Packets broken into smaller units called “flits”
- Flit: ("flow control digit”) a unit of flow control in the network
- Flits become minimum granularity of routing/buffering

(MU 15-418/618, Spring 2016

Packet format

m A packet consists of:
- Header:

- Contains routing and control information
- Atstart of packet to router can start forwarding early

- Payload/body: containing the data to be sent

- Tail

- Contains control information, e.g., error code

- Generally located at end of packet so it can be generated “on the way out”
(sender computes checksum, appends it to end of packet)

_—

Packet

Header

Payload/body

Tail

(MU 15-418/618, Spring 2016

Handling contention

Scenario: two packets need to be routed onto the same outbound
link at the same time

® (Options:
Packet 1

- Buffer one packet, send it over link later

- Drop one packet

- Reroute one packet (deflection)

B [n this lecture: we only consider buffering* =i M

Packet 2

* But recent research has looked at using bufferless networks with deflection routing

as a power-efficient interconnect for chip multiprocessors.
P P P (MU 15-418/618, Spring 2016

Circuit-switched routing

m High-granularity resource allocation

- Main idea: pre-allocate all resources (links across multiple switches) along entire
network path for a message (“setup a flow”)

Source [] s Dest
Reserved Reserved Reserved
Link Link Link
B (Costs

- Needs setup phase (“probe”) to set up the path (and to tear it down and release
the resources when message complete)

- Lower link utilization. Transmission of two messages cannot share same link (even
if some resources on a preallocated path are no longer utilized during a
transmission)

m Benefits
- No contention during transmission due to preallocation, so no need for buffering

- Arbitrary message sizes (once path is set up, send data until done)
(MU 15-418/618, Spring 2016

Store-and-forward (packet-based routing)

B Packet copied entirely into network switch before moving to next node

® Flow control unitis an entire packet

- Different packets from the same message can take different routes, but all data in a packet is
transmitted over the same route

m Requires buffering for entire packet in each router

B High per-packet latency (latency = packet transmission time on link x network distance)

One packet

Source

/

ad

Packet Buffer

r]
Busy Link

Packet Buffer

r |
Busy Link

Packet Buffer

Packet Buffer

Packet Buffer

Busy Link

Packet Buffer

Note to students: in lecture this slide was animated and the final build shown here is not illustrative of store-and-forward
routing concept (please refer to lecture video)

Destination

(MU 15-418/618, Spring 2016

Cut-through flow control (also packet-based)

B Switch starts forwarding data on next link as soon as packet header is received
(header determines how much link bandwidth packet requires + where to route)

B Result: reduced transmission latency
- Cut-through routing reduces to store-and-forward under high contention. Why?

Source

o] .
/ Busy Link Busy Link
One Packet Packet Buffer Packet Buffer Packet Buffer
Busy Link
Packet Buffer Packet Buffer Packet Buffer

Destination

Store and forward solution from previous slide: 3 hops x 4 units of time to transmit packet over a single link = 12 units of time

Cut-through solution: 3 steps of latency for head of packet to get to destination + 3 units of time for rest of packet = 6 units of time

Note to students: in lecture this slide was animated and the final build shown here is not illustrative of the cut-through

routing concept (please refer to lecture video)

(MU 15-418/618, Spring 2016

Cut-through flow control

m [f output link is blocked (cannot transmit head), transmission
of tail can continue

- Worst case: entire message is absorbed into a buffer in a switch (cut-through flow
control degenerates to store-and-forward in this case)

- Requires switches to have buffering for entire packet, just like store-and-forward

(MU 15-418/618, Spring 2016

Wormbhole flow control

m Flit (flow control digit)

- Packets broken into smaller units called “flits”
- Flit: ("flow control digit”) a unit of flow control in the network

- Flits become minimum granularity of routing/buffering

= Recall: up until now, packets were the granularity of transfer AND
flow control and buffering (store-and-forward, cut-through routing)

Message

_—

Packet Packet
_—

Head : : Tail Head : : Tail
Elit Flit Flit Flit Flit Flit Flit Elit Elit Flit Flit Flit Flit Flit Flit Elit

(MU 15-418/618, Spring 2016

Wormbhole flow control

Tail flit

Example:

Routing information only in head flit

Body flits follows head, tail flit flows body

If head flit blocks, rest of packet stops
Completely pipelined transmission

- Forlong messages, latency is almost entirely independent
of network distance. Why?

Source

Body flits (2 in this example)

Four-flit packet sent
using wormhole
flow control

T

B,

Bo

Flit Buffer

r |
Busy Link

Flit Buffer

r]
Busy Link

Flit Buffer

Busy Link

Flit Buffer

Flit Buffer

H / Head flit

FitBuffer | Dastination

(MU 15-418/618, Spring 2016

Problem: head-of-line blocking

Head flit for blue packet:
(route is free, but blocked
ehind gray packet in buffer)

Blue flits to be routed
this way to their dest
(this link is free)

4

Flit Buffer Flit Buffer Flit Buffer
I
I
I
| b
Idle link Idle link
Flit Buffer (reserved) Flit Buffer (reserved) Flit Buffer
I
| Idle link
| (reserved)
Flit Buffer Flit Buffer / Flit Buffer
Head flit for gray packet:
(blocked waiting for this
>

busy link)

(MU 15-418/618, Spring 2016

Virtual channel flow control

B Multiplex multiple operations over single physical channel

B Divide switch’s input buffer into multiple buffers sharing a single physical channel

B Reduces head-of-line blocking

Packet in flow 0:
transmitting

Buf 0 Buf 1

See “Virtual Channel Flow Control,” [Dally ISCA 1990]

Buf 0

Buf 1

I Packetin flow 1: Blocked

I waiting for this link
0

\4

(MU 15-418/618, Spring 2016

Other uses of virtual channels

B Deadlock avoidance

- (Can be used to break cyclic dependency of resources
- Prevent cycles by ensuring requests and responses use different virtual channels

- “Escape”V(s: retain at least one virtual channel that uses deadlock-free routing

B Prioritization of traffic classes

- Provide quality-of-service guarantees

- Some virtual channels have higher priority than others

(MU 15-418/618, Spring 2016

Current research topics

m Energy efficiency of interconnections

- Interconnect can be energy intensive (~35% of total chip power in MIT RAW
research processor)

- Bufferless networks
= Other techniques: turn on/off regions of network, use fast and slow networks

B Prioritization and quality-of-service guarantees

- Prioritize packets to improve multi-processor performance (e.g., some
applications may be more sensitive to network performance than others)

- Throttle endpoints (e.qg., cores) based on network feedback

B New/emerging technologies
- Die stacking (3D chips)
- Photonic networks-on-chip (use optical waveguides instead of wires)

- Reconfigurable devices (FPGAs): create custom interconnects tailored to
application (see CMU projects: CONNECT, CoRAM, Shrinkwrap)

(MU 15-418/618, Spring 2016

Summary

B The performance of the interconnection network in a modern multi-processor is
critical to overall system performance

- Buses do not scale to many nodes
- Historically interconnect was off-chip network connecting sockets, boards, racks
- Today, all these issues apply to the design of on-chip networks

B Network topologies differ in performance, cost, complexity tradeoffs
- e.g., crosshar, ring, mesh, torus, multi-stage network, fat tree, hypercube

B Challenge: efficiently routing data through network
- Interconnect is a precious resource (communication is expensive!)

- Flit-based flow control: fine-grained flow control to make good use of available
link bandwidth

- If interested, much more to learn about (not discussed in this class): ensuring
quality-of-service, prioritization, reliability, deadlock, livelock, etc.

(MU 15-418/618, Spring 2016

