Lecture 15:

Interconnection
Networks

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2016

Credit: some slides created by Michael Papamichael, others based on slides from Onur Mutlu’s 18-742



Tep No

Last Ones Standing

“The last ones standing will be stuck in the latedays queue, so the TAs are offering
cookies to early finishers.”

(Serious note: It would be great if some students can plan to finish early to spread
out the load.)
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THE DEAL



The Exam 1 Deal

B No exam 1 solutions will be distributed at this time

m You have the opportunity to redo up to 2 questions (of your
choosing) from the exam, on your own time.
- You may discuss the problems with your classmates, instructor, and TAs.
- You must write your solutions on your own.

- You will get 50% credit for lost points on regraded questions.
= This must be handed in by Friday, April 8th

But... there’s a catch!



The Catch

You must hand in your solution to the course staff at a
designated office hours.

And you are not allowed to hand in unless you are able to
successfully answer a series of questions we ask you

The questions will a subset of the questions on exam 1
(or simple follow up variants)

The staff will post times to sign up for 6-minute time slots
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Basic system design from previous lectures

Processor Processor

Bus
Arbitrator

Interconnect (shared bus)

Bus clients (interconnect nodes)

Bus interconnect: ——— Request bus:
e.g., 40 bits cmd + address

All nodes connected by a shared

set of wires I,

e.g., 256 bits
I Response tag

3 bits
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Today: modern interconnect designs

Processor

Processor

—

</

————

Interconnection Network

> /

InterCOHHECt nOdes
Memory

Today’s topics: the basic ideas of building a high-performance

interconnection network in a parallel processor.

(think: “a network-on-a-chip”)
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What are interconnection networks used for?

To connect:

Processor cores with other cores
Processors and memories
Processor cores and caches
Caches and caches

/0 devices
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Why is the design of the interconnection
network important?

m System scalability

- How large of a system can be built?

- How easy is it to add more nodes (e.g., cores)

m System performance and energy efficiency

- How fast can cores, caches, memory communicate
- How long is latency to memory?

- How much energy is spent on communication?
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With increasing core counts...

Scalability of on-chip interconnection network becomes increasingly important

9
trolle

Tegra K1: 4 + 1 ARM cores + GPU cores
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Intel Xeon Phi (72-core x86)



Interconnect terminology
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Terminology

m Network node: a network endpoint connected to a router/switch
- Examples: processor caches, the memory controller

B Network interface:
- Connects nodes to the network

m Switch/router:
- Connects a fixed number of input links to a fixed number of output links

m Link:

Network interface
= Abundle of wires carrying a signal

_.- Switch

-
-
| 4
-
-
"
-
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Design issues

m Topology: how switches are connected via links

- Affects routing, throughput, latency, complexity/cost of
implementation

%OQG’QQO?
$588358%

m Routing: how a message gets from its source to its destination in
the network

- (an be static (messages take a predetermined path) or adaptive based on load

m Buffering and flow control

- What data is stored in the network? packets, partial packets? etc.

- How does the network manage buffer space?
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Properties of interconnect topology

m Routing distance
= Number of links (“hops”) along a route between two nodes

m Diameter: the maximum routing distance

m Average distance: average routing distance over all valid routes
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Properties of interconnect topology

m Direct vs. indirect networks
- Direct network: endpoints sit “inside” the network

- e.g., mesh is direct network: every node is both an endpoint and a switch

Q_Q_Q
al al @ 30
ol al @ e B0
ol al @ O
B0
- _pO
Q ~$Q
QL Ol O /.'O
ol ¢ 20

Direct network Indirect network
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Properties of an interconnect topology

m Bisection bandwidth:
- Common metric of performance for recursive topologies

= Cut network in half, sum bandwidth of all severed links
- Warning: can be misleading as it does not account for switch and routing efficiencies

m Blocking vs. non-blocking:

- If connecting any pairing of nodes is possible, network is non-blocking (otherwise,
it’s blocking)
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Example: blocking vs. non-blocking

m |s this network blocking or non-blocking?
= Consider simultaneous messages from 0-to-1 and 3-to-7.

= Consider simultaneous messages from 1-to-6 and 3-to-7. Blocking!!!

©
0
8
=Y

Note: in this network illustration, each node is drawn Conflict
twice for clarity (at left and at right) CMU 15-418/618, Spring 2016
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Load-latency behavior of network

General rule: latency increases with load (throughput)

Zero load or

idle latency

(topology-+routing
+flow control)

Min latency given by
routing algorithm

Min latency given by
topology

Saturation throughput
(given by flow control)

Throughput
given by
routing

Throughput given
by topology

Load - Offered Traffic (bits/sec)
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Interconnect topologies
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Many possible network topologies

Bus
Crosshar
Ring

Tree
Omega
Hypercube
Mesh
Torus
Butterfly
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Bus interconnect

m Good:
- Simple design
- (ost effective for a small number of nodes
- Easy to implement coherence (via snooping)

m Bad:

- Contention: all nodes contend for shared bus

- Limited bandwidth: all nodes communicate over same wires (one
communication at a time)

- High electrical load = low frequency, high power

PPPP®
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Crossbar interconnect

® Every node is connected to every
other node (non-blocking, indirect)

2

m Good:
- 0(1) latency and high bandwidth

7\ 7\ 7\ 7\ 7\ 7\ e
/ | | | YV / \)

m Bad:

- Not scalable: O(N2) switches

- High cost

- Difficult to arbitrate at scale
A

Crossbar scheduling algorithms / efficient hardware
implementations are still active research areas.
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Note: in this network illustration, each node is drawn twice for clarity (at left and at top)

8-node crosshar network (N=8)
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Crossbar interconnect

(Here is a more verbose illustration than that on previous slide)
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Crossbhars were used in recent multi-core
processing from Oracle (previously Sun)
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Sun SPARC 12 (8 cores, 8 L2 cache banks) Oracle SPARCTS5 (16 cores, 8 L3 cache banks)

Note that crossbhar (CCX) occupies about the same chip area as a core
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Ring

® Good:
- Simple
= Cheap: O(N) cost

m Bad:
- High latency: O(N)
- Bisection bandwidth remains constant as
nodes are added (scalability issue)

B Used in recent Intel architectures
- Corei?

© o e

B Also used in IBM CELL Broadband Engine (9 cores)
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Intel’s ring interconnect

Introduced in Sandy Bridge microarchitecture

)

L3 cachesslice
(2 MB)

L3 cacheslice
(2 MB)

L3 cache slice
(2 MB)

L3 cachesslice
(2 MB)

=
.

=

System Agent

Graphics

Four rings

— request

— shoop

— ack

— data (32 bytes)

Six interconnect nodes: four
“slices” of L3 cache + system
agent + graphics

Each bank of L3 connected to
ring bus twice

Theoretical peak BW from
cores to L3 at 3.4 GHz s
approx. 435 GB/sec

— When each core is accessing its

local slice
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Mesh

B Direct network

B Echoes locality in grid-based applications
®m O(N) cost

B Average latency: O(sqrt(N))

m Easy to lay out on chip: fixed-length links

m Path diversity: many ways for message to
travel from one node to another
m Used by:
- Tilera processors
- Prototype Intel chips
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2D Mesh
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Xeon Phi (Knights

m 72 cores, arranged as 6 X 6 mesh
of tiles (2 cores/tile)

®m  YXrouting of messages:

- MoveinY
- llTurnll
- MoveinX

DDR

MCDRAM MCDRAM
T
EDC EDC
#1: Tile i
f: Tile T

L e
Tile
. e
Tile

e

EDC
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A

MCDRAM

Tile

EDC

MCDRAM

PCle
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v
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EDC

——
Tile
— I
Tile
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Tile
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:’—< >—<::’—_
Misc EDC EDC

h 4
MCDRAM MCDRAM
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Torus

m Characteristics of mesh topology are different
based on whether node is near edge or middle
of network (torus topology introduces new
links to avoid this problem)

® Still O(N) cost, but higher cost than 2D grid

B Higher path diversity and bisection BW than
mesh

o110 | LO|LO
|10 10|10
O 110 | 1O]| 1O

B Higher complexity

- Difficult to layout on chip

= Unequal link lengths

2D Torus
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Trees

B Planar, hierarchical topology
® Like mesh/torus, good when traffic has locality
m Latency: O(lg N)

B Use“fat trees” to alleviate root bandwidth problem (higher bandwidth links near root)

O 60 @
(0 90 @

G 0@ @
9 ORC @ 00 @60 @6 O@

H-Tree Fat Tree
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Hypercube

m Low latency: O(lg N)

m Radix: O(Ig N)
B Number of links O(N Ig N) @
o oo ﬂ
0-D 1-D 2-D 3-D 4-D

1101 1111
110 /
4110
010 14—
//
010 110 P 001 71011
® 6D hypercube used in 64-core // / 10
Cosmic Cube computer developed 00 00
at Caltech in the 80s
0000 0010

® 5GI Origin used a hypercube
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Multi-stage logarithmic

Indirect network with multiple switches between terminals
B Cost:O(NIgN)
m Latency: O(lg N)

B Many variations: Omega, butterfly, Clos networks, etc...
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Omega Network .
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Review: network topologies

Topology
Direct/Indirect

Blocking/
Non-blocking

Cost

Latency

—O—O0—

I
I
]
<>I
I
l
I

dddaa:

D)
9)
9
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D)
D)

Riitiiil

Crosshar

Indirect

Non-blocking

O(N?)
0(1)

©__

B
-0
5

O

$883358%

&

Multi-stage log.

Indirect

Blocking

(one discussed in class

is, others are not)

0(NIg N)
0(Ig N)

Mesh

Direct

Blocking

O(N)
O(sqrt(N))

(average)
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Buffering and flow control
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Circuit switching vs. packet switching

m (Circuit switching sets up a full path (acquires all resources)
between sender and receiver prior to sending a message

- Establish route (reserve links) then send all data for message

i

- Higher bandwidth transmission (no per-packet link mgmt overhead)
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- Does incur overhead to set up/tear down path

- S ."‘ /

- Reserving links can result in low utilization

m Packet switching makes routing decisions per packet

- Route each packet individually (possibly over different network links)

- Opportunity to use link for a packet whenever link is idle

- Overhead due to dynamic switching logic during transmission

- No setup/tear down overhead
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Granularity of communication

B Message

- Unit of transfer between network clients (e.g., cores, memory)
- (Can be transmitted using many packets

B Packet

= Unit of transfer for network
- (Can be transmitted using multiple flits (will discuss later)

m Flit (flow control digit)

- Packets broken into smaller units called “flits”
- Flit: ("flow control digit”) a unit of flow control in the network
- Flits become minimum granularity of routing/buffering
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Packet format

m A packet consists of:
- Header:

- Contains routing and control information
- Atstart of packet to router can start forwarding early

- Payload/body: containing the data to be sent

- Tail

- Contains control information, e.g., error code

- Generally located at end of packet so it can be generated “on the way out”
(sender computes checksum, appends it to end of packet)

_—

Packet

Header

Payload/body

Tail
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Handling contention

Scenario: two packets need to be routed onto the same outbound
link at the same time

® (Options:
Packet 1

- Buffer one packet, send it over link later

- Drop one packet

- Reroute one packet (deflection)

B [n this lecture: we only consider buffering* =i M

Packet 2

* But recent research has looked at using bufferless networks with deflection routing

as a power-efficient interconnect for chip multiprocessors.
P P P (MU 15-418/618, Spring 2016



Circuit-switched routing

m High-granularity resource allocation

- Main idea: pre-allocate all resources (links across multiple switches) along entire
network path for a message (“setup a flow”)

Source [ ] s Dest
Reserved Reserved Reserved
Link Link Link
B (Costs

- Needs setup phase (“probe”) to set up the path (and to tear it down and release
the resources when message complete)

- Lower link utilization. Transmission of two messages cannot share same link (even
if some resources on a preallocated path are no longer utilized during a
transmission)

m Benefits
- No contention during transmission due to preallocation, so no need for buffering

- Arbitrary message sizes (once path is set up, send data until done)
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Store-and-forward (packet-based routing)

B Packet copied entirely into network switch before moving to next node

® Flow control unitis an entire packet

- Different packets from the same message can take different routes, but all data in a packet is
transmitted over the same route

m Requires buffering for entire packet in each router

B High per-packet latency (latency = packet transmission time on link x network distance)

One packet

Source

/

ad

Packet Buffer

r ]
Busy Link

Packet Buffer

r |
Busy Link

Packet Buffer

Packet Buffer

Packet Buffer

Busy Link

Packet Buffer

Note to students: in lecture this slide was animated and the final build shown here is not illustrative of store-and-forward
routing concept (please refer to lecture video)

Destination
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Cut-through flow control (also packet-based)

B Switch starts forwarding data on next link as soon as packet header is received
(header determines how much link bandwidth packet requires + where to route)

B Result: reduced transmission latency
- Cut-through routing reduces to store-and-forward under high contention. Why?

Source

o ] .
/ Busy Link Busy Link
One Packet Packet Buffer Packet Buffer Packet Buffer
Busy Link
Packet Buffer Packet Buffer Packet Buffer

Destination

Store and forward solution from previous slide: 3 hops x 4 units of time to transmit packet over a single link = 12 units of time

Cut-through solution: 3 steps of latency for head of packet to get to destination + 3 units of time for rest of packet = 6 units of time

Note to students: in lecture this slide was animated and the final build shown here is not illustrative of the cut-through

routing concept (please refer to lecture video)
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Cut-through flow control

m [f output link is blocked (cannot transmit head), transmission
of tail can continue

- Worst case: entire message is absorbed into a buffer in a switch (cut-through flow
control degenerates to store-and-forward in this case)

- Requires switches to have buffering for entire packet, just like store-and-forward
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Wormbhole flow control

m Flit (flow control digit)

- Packets broken into smaller units called “flits”
- Flit: ("flow control digit”) a unit of flow control in the network

- Flits become minimum granularity of routing/buffering

= Recall: up until now, packets were the granularity of transfer AND
flow control and buffering (store-and-forward, cut-through routing)

Message

_—

Packet Packet
_—

Head : : . . . . Tail Head : : . . . . Tail
Elit Flit Flit Flit Flit Flit Flit Elit Elit Flit Flit Flit Flit Flit Flit Elit
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Wormbhole flow control

Tail flit

Example:

Routing information only in head flit

Body flits follows head, tail flit flows body

If head flit blocks, rest of packet stops
Completely pipelined transmission

- Forlong messages, latency is almost entirely independent
of network distance. Why?

Source

Body flits (2 in this example)

Four-flit packet sent
using wormhole
flow control

T

B,

Bo

Flit Buffer

r |
Busy Link

Flit Buffer

r ]
Busy Link

Flit Buffer

Busy Link

Flit Buffer

Flit Buffer

H / Head flit

FitBuffer | Dastination
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Problem: head-of-line blocking

Head flit for blue packet:
(route is free, but blocked
ehind gray packet in buffer)

Blue flits to be routed
this way to their dest
(this link is free)

4

Flit Buffer Flit Buffer Flit Buffer
I
I
I
| b
Idle link Idle link
Flit Buffer (reserved) Flit Buffer (reserved) Flit Buffer
I
| Idle link
| (reserved)
Flit Buffer Flit Buffer / Flit Buffer
Head flit for gray packet:
(blocked waiting for this
>

busy link)
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Virtual channel flow control

B Multiplex multiple operations over single physical channel

B Divide switch’s input buffer into multiple buffers sharing a single physical channel

B Reduces head-of-line blocking

Packet in flow 0:
transmitting

Buf 0 Buf 1

See “Virtual Channel Flow Control,” [Dally ISCA 1990]

Buf 0

Buf 1

I Packetin flow 1: Blocked

I waiting for this link
0

\4
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Other uses of virtual channels

B Deadlock avoidance

- (Can be used to break cyclic dependency of resources
- Prevent cycles by ensuring requests and responses use different virtual channels

- “Escape”V(s: retain at least one virtual channel that uses deadlock-free routing

B Prioritization of traffic classes

- Provide quality-of-service guarantees

- Some virtual channels have higher priority than others
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Current research topics

m  Energy efficiency of interconnections

- Interconnect can be energy intensive (~35% of total chip power in MIT RAW
research processor)

- Bufferless networks
= Other techniques: turn on/off regions of network, use fast and slow networks

B Prioritization and quality-of-service guarantees

- Prioritize packets to improve multi-processor performance (e.g., some
applications may be more sensitive to network performance than others)

- Throttle endpoints (e.qg., cores) based on network feedback

B New/emerging technologies
- Die stacking (3D chips)
- Photonic networks-on-chip (use optical waveguides instead of wires)

- Reconfigurable devices (FPGAs): create custom interconnects tailored to
application (see CMU projects: CONNECT, CoRAM, Shrinkwrap)
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Summary

B The performance of the interconnection network in a modern multi-processor is
critical to overall system performance

- Buses do not scale to many nodes
- Historically interconnect was off-chip network connecting sockets, boards, racks
- Today, all these issues apply to the design of on-chip networks

B Network topologies differ in performance, cost, complexity tradeoffs
- e.g., crosshar, ring, mesh, torus, multi-stage network, fat tree, hypercube

B Challenge: efficiently routing data through network
- Interconnect is a precious resource (communication is expensive!)

- Flit-based flow control: fine-grained flow control to make good use of available
link bandwidth

- If interested, much more to learn about (not discussed in this class): ensuring
quality-of-service, prioritization, reliability, deadlock, livelock, etc.
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