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Executive Order  
July 29, 2015

EXECUTIVE ORDER
- - - - - - -

CREATING A NATIONAL STRATEGIC COMPUTING 
INITIATIVE

 
By the authority vested in me as President by the 
Constitution and the laws of the United States of 
America, and to maximize benefits of high-
performance computing (HPC) research, 
development, and deployment, it is hereby ordered 
as follows:

The NSCI is a whole-of-government effort designed 
to create a cohesive, multi-agency strategic vision 
and Federal investment strategy, executed in 
collaboration with industry and academia, to 
maximize the benefits of HPC for the United States.
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Strategic Objectives

(1) Accelerating delivery of a capable exascale computing system that integrates 
hardware and software capability to deliver approximately 100 times the 
performance of current 10 petaflop systems across a range of applications 
representing government needs.  

(2) Increasing coherence between the technology base used for modeling and 
simulation and that used for data analytic computing.  

(3) Establishing, over the next 15 years, a viable path forward for future HPC 
systems even after the limits of current semiconductor technology are reached 
(the "post-Moore's Law era").  

(4) Increasing the capacity and capability of an enduring national HPC ecosystem 
by employing a holistic approach that addresses relevant factors such as 
networking technology, workflow, downward scaling, foundational algorithms 
and software, accessibility, and workforce development.  

(5) Developing an enduring public-private collaboration to ensure that the benefits 
of the research and development advances are, to the greatest extent, shared 
between the United States Government and industrial and academic sectors. 
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Comparing Two Large-Scale Systems

Oakridge Titan

■ Monolithic 
supercomputer (2nd 
fastest in world)

■ Designed for compute-
intensive applications

Google Data Center

■ Servers to support 
millions of customers

■ Designed for data 
collection, storage, 
and analysis
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Supercomputer Applications

Simulation-Based Modeling
■ System structure + initial conditions + transition behavior
■ Discretize time and space
■ Run simulation to see what happens

Requirements
■ Model accurately reflects actual system
■ Simulation faithfully captures model

Science Industrial 
Products

Public Health
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Titan Hardware

Each Node
■ AMD 16-core processor
■ nVidia Graphics Processing Unit
■ 38 GB DRAM
■ No disk drive

Overall
■ 7MW, $200M

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node 18,688

•   •  •

GPU GPU GPU
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Titan Node Structure: CPU

CPU
■ 16 cores sharing common memory
■ Supports multithreaded programming
■ ~0.16 x 1012 floating-point operations per second (FLOPS) 

peak performance

DRAM 
Memory
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Titan Node Structure: GPU

Kepler GPU
■ 14 multiprocessors
■ Each with 12 groups of 16 stream processors

● 14 X 12 X 16 = 2688 
■ Single-Instruction, Multiple-Data parallelism

● Single instruction controls all processors in group
■ 4.0 x 1012 FLOPS peak performance
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Titan Programming: Principle

Solving Problem Over Grid
■ E.g., finite-element system
■ Simulate operation over time

Bulk Synchronous Model
■ Partition into Regions

● p regions for p-node machine
■ Map Region per Processor



12

Titan Programming: Principle (cont)

Bulk Synchronous Model
■ Map Region per Processor
■ Alternate

● All nodes compute behavior of 
region

» Perform on GPUs
● All nodes communicate values at 

boundaries

P1 P2 P3 P4 P5

Communicate

Communicate

Communicate

Compute

Compute

Compute
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Bulk Synchronous Performance

■ Limited by performance of 
slowest processor

Strive to keep perfectly 
balanced
■ Engineer hardware to be 

highly reliable
■ Tune software to make as 

regular as possible
■ Eliminate “noise”

● Operating system events
● Extraneous network activity

P1 P2 P3 P4 P5

Communicate

Communicate

Communicate

Compute

Compute

Compute
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Titan Programming: Reality
System Level

■ Message-Passing Interface (MPI) supports node 
computation, synchronization and communication

Node Level
■ OpenMP supports thread-level operation of node 

CPU
■ CUDA programming environment for GPUs

● Performance degrades quickly if don’t have perfect 
balance among memories and processors

Result
■ Single program is complex combination of 

multiple programming paradigms
■ Tend to optimize for specific hardware 

configuration
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MPI Fault Tolerance

Checkpoint
■ Periodically store state of all 

processes
■ Significant I/O traffic

Restore
■ When failure occurs
■ Reset state to that of last 

checkpoint
■ All intervening computation 

wasted

Performance Scaling
■ Very sensitive to number of 

failing components

Restore

Wasted 
Computation

Compute & 
Communicate

P1 P2 P3 P4 P5

Checkpoint

Compute & 
Communicate
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Supercomputer Programming Model
■ Program on top of bare 

hardware

Performance
■ Low-level programming to 

maximize node performance
■ Keep everything globally 

synchronized and balanced

Reliability
■ Single failure causes major 

delay
■ Engineer hardware to 

minimize failures

Hardware

Machine-Dependent 
Programming Model

Software 
Packages

Application 
Programs
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Internet Computing

Web Search
■ Aggregate text data from 

across WWW
■ No definition of correct 

operation
■ Do not need real-time 

updating

Mapping Services
■ Huge amount of 

(relatively) static data
■ Each customer requires 

individualized 
computation

Online Documents
■ Must be stored reliably
■ Must support real-time 

updating
■ (Relatively) small data 

volumes



19

Other Data-Intensive Computing Applications

Wal-Mart
■ 267 million items/day, sold at 6,000 stores
■ HP built them 4 PB data warehouse
■ Mine data to manage supply chain, 

understand market trends, formulate 
pricing strategies

LSST
■ Chilean telescope will scan entire sky every 

3 days
■ A 3.2 gigapixel digital camera
■ Generate 30 TB/day of image data
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Data-Intensive Application Characteristics

Diverse Classes of Data
■ Structured & unstructured
■ High & low integrity requirements

Diverse Computing Needs
■ Localized & global processing
■ Numerical & non-numerical
■ Real-time & batch processing
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Google Data Centers

Dalles, Oregon
■ Hydroelectric power @ 2¢ / KW 

Hr
■ 50 Megawatts
● Enough to power 60,000 homes

■ Engineered for low cost, 
modularity & power efficiency

■ Container: 1160 server nodes, 
250KW
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Google Cluster

■ Typically 1,000−2,000 nodes

Node Contains
■ 2 multicore CPUs
■ 2 disk drives
■ DRAM

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

•   •  •
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Hadoop Project
File system with files distributed across nodes

■ Store multiple (typically 3 copies of each file)
● If one node fails, data still available

■ Logically, any node has access to any file
● May need to fetch across network

Map / Reduce programming environment
■ Software manages execution of tasks on nodes

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

•   •  •
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Map/Reduce Programming Model

■ Map computation across many objects
● E.g., 10

10

 Internet web pages
■ Aggregate results in many different ways

M

x1

M

x2

M

x3

M

xn

k1

Map

Reduce
k1

kr

•  •  •

•  •  •

Key-Value 
Pairs

Dean & Ghemawat: “MapReduce: Simplified Data 
Processing on Large Clusters”, OSDI 2004
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Map/Reduce Operation
Characteristics

■ Computation broken into many, 
short-lived tasks
● Mapping, reducing

■ Tasks mapped onto processors 
dynamically

■ Use disk storage to hold 
intermediate results

Strengths
■ Flexibility in placement, 

scheduling, and load balancing
■ Can access large data sets

Weaknesses
■ Higher overhead
■ Lower raw performance

Map
Reduce

Map
Reduce

Map
Reduce

Map
Reduce

Map/Reduce
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Map/Reduce Fault Tolerance
Data Integrity

■ Store multiple copies of each 
file

■ Including intermediate results 
of each Map / Reduce
● Continuous checkpointing

Recovering from Failure
■ Simply recompute lost result

● Localized effect
■ Dynamic scheduler keeps all 

processors busy
Use software to build reliable 

system on top of unreliable 
hardware

Map
Reduce

Map
Reduce

Map
Reduce

Map
Reduce

Map/Reduce
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Cluster Programming Model
■ Application programs written in 

terms of high-level operations 
on data

■ Runtime system controls 
scheduling, load balancing, …

Scaling Challenges
■ Centralized scheduler forms 

bottleneck
■ Copying to/from disk very 

costly
■ Hard to limit data movement

● Significant performance factor

Hardware

Machine-Independent 
Programming Model

Runtime 
System

Application 
Programs
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Recent Programming Systems

Spark Project

■ at U.C., Berkeley
■ Grown to have large open source community

GraphLab
■ Started as project at CMU by Carlos Guestrin
■ Environment for describing machine-learning 

algorithms
● Sparse matrix structure described by graph
● Computation based on updating of node values



29

Computing 
Landscape Trends

Computational Intensity

D
at

a 
In

te
ns

ity

Modeling & 
 Simulation-Driven 

 Science & 
EngineeringTraditional 

Supercomputing

Mixing simulation 
with data analysis



30

Combining Simulation with Real Data

Limitations
■ Simulation alone: Hard to know if model is correct
■ Data alone: Hard to understand causality & “what if”

Combination
■ Check and adjust model during simulation
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Real-Time Analytics

Millenium XXL Simulation 
(2010)
■ 3 X 109 particles
■ Simulation run of 9.3 days on 

12,228 cores
■ 700TB total data generated

● Save at only 4 time points
● 70 TB

■ Large-scale simulations 
generate large data sets

What If?
■ Could perform data analysis 

while simulation is running

Simulation 
Engine

Analytic 
Engine

http://gavo.mpa-garching.mpg.de/mxxlbrowser/sea/sea.html
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Example Analytic Applications

ClassifierImage Description

Microsoft Project Adam

TransducerEnglish 
Text

German 
Text
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Data Analysis with Deep Neural Networks

Task:
■ Compute classification of 

set of input signals

Training
■ Use many training samples of form input / desired output
■ Compute weights that minimize classification error

Operation
■ Propagate signals from input to output
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DNN Application Example
Facebook DeepFace Architecture
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Training DNNs

Characteristics
■ Iterative numerical 

algorithm
■ Regular data 

organization

Project Adam Training
■ 2B connections
■ 15M images
■ 62 machines
■ 10 days
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Challenges for Convergence
Supercomputers

■ Customized
■ Optimized for reliability

■ Source of “noise”
■ Static scheduling

■ Low-level, processor-
centric model

Data Center Clusters

■ Consumer grade
■ Optimized for low cost

■ Provides reliability
■ Dynamic allocation

■ High level, data-centric 
model

Hardware

Run-Time System

Application Programming
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Summary: Computation/Data Convergence

Two Important Classes of Large-Scale Computing
■ Computationally intensive supercomputing
■ Data intensive processing

● Internet companies + many other applications

Followed Different Evolutionary Paths
■ Supercomputers: Get maximum performance from available 

hardware
■ Data center clusters: Maximize cost/performance over variety of 

data-centric tasks
■ Yielded different approaches to hardware, runtime systems, and 

application programming

A Convergence Would Have Important Benefits
■ Computational and data-intensive applications
■ But, not clear how to do it
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TECHNOLOGY CHALLENGES
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Moore’s Law

■ Basis for ever-increasing computer power
■ We’ve come to expect it will continue
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Challenges to Moore’s Law: Technical

■ Must continue to shrink features sizes
■ Approaching atomic scale

Difficulties
■ Lithography at such small dimensions
■ Statistical variations among devices

• 2022: transistors with 
4nm feature size 

• Si lattice spacing 
0.54nm
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Challenges to Moore’s Law: Economic
Growing Capital Costs

■ State of art fab line ~$20B
■ Must have very high volumes to amortize 

investment
■ Has led to major consolidations
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Dennard Scaling
■ Due to Robert Dennard, IBM, 1974
■ Quantifies benefits of Moore’s Law

How to shrink an IC Process
■ Reduce horizontal and vertical dimensions by k
■ Reduce voltage by k

Outcomes
■ Devices / chip increase by k2

■ Clock frequency increases by k
■ Power / chip constant

Significance
■ Increased capacity and performance
■ No increase in power
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End of Dennard Scaling

What Happened?
■ Can’t drop voltage below ~1V
■ Reached limit of power / chip in 2004
■ More logic on chip (Moore’s Law), but can’t make them run 

faster
● Response has been to increase cores / chip
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Research Challenges

Supercomputers
■ Can they be made more dynamic and adaptive?

● Requirement for future scalability
■ Can they be made easier to program?

● Abstract, machine-independent programming models

Data-Intensive Computing
■ Can they be adapted to provide better computational 

performance?
■ Can they make better use of data locality?

● Performance & power-limiting factor

Technology / Economic
■ What will we do when Moore’s Law comes to an end for CMOS?
■ How can we ensure a stable manufacturing environment?


