
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2016

Lecture 24:

The Future of High-
Performance Computing

2

Executive Order  
July 29, 2015

EXECUTIVE ORDER
- - - - - - -

CREATING A NATIONAL STRATEGIC COMPUTING
INITIATIVE

By the authority vested in me as President by the
Constitution and the laws of the United States of
America, and to maximize benefits of high-
performance computing (HPC) research,
development, and deployment, it is hereby ordered
as follows:

The NSCI is a whole-of-government effort designed
to create a cohesive, multi-agency strategic vision
and Federal investment strategy, executed in
collaboration with industry and academia, to
maximize the benefits of HPC for the United States.

3

Strategic Objectives

(1) Accelerating delivery of a capable exascale computing system that integrates
hardware and software capability to deliver approximately 100 times the
performance of current 10 petaflop systems across a range of applications
representing government needs.

(2) Increasing coherence between the technology base used for modeling and
simulation and that used for data analytic computing.

(3) Establishing, over the next 15 years, a viable path forward for future HPC
systems even after the limits of current semiconductor technology are reached
(the "post-Moore's Law era").

(4) Increasing the capacity and capability of an enduring national HPC ecosystem
by employing a holistic approach that addresses relevant factors such as
networking technology, workflow, downward scaling, foundational algorithms
and software, accessibility, and workforce development.

(5) Developing an enduring public-private collaboration to ensure that the benefits
of the research and development advances are, to the greatest extent, shared
between the United States Government and industrial and academic sectors.

4

Comparing Two Large-Scale Systems

Oakridge Titan

■ Monolithic
supercomputer (2nd
fastest in world)

■ Designed for compute-
intensive applications

Google Data Center

■ Servers to support
millions of customers

■ Designed for data
collection, storage,
and analysis

5

Computing
Landscape

Computational Intensity

Internet-Scale
 Computing

Personal
Computing

Cloud
Services

D
at

a
In

te
ns

ity

Modeling &
 Simulation-Driven

 Science &
Engineering

Traditional Supercomputing

• Web search
• Mapping / directions
• Language translation
• Video streaming

Google Data Center

Oakridge Titan

6

Supercomputing Landscape

Computational Intensity

D
at

a
In

te
ns

ity

Modeling &
 Simulation-Driven

 Science &
Engineering

Oakridge Titan

7

Supercomputer Applications

Simulation-Based Modeling
■ System structure + initial conditions + transition behavior
■ Discretize time and space
■ Run simulation to see what happens

Requirements
■ Model accurately reflects actual system
■ Simulation faithfully captures model

Science Industrial
Products

Public Health

8

Titan Hardware

Each Node
■ AMD 16-core processor
■ nVidia Graphics Processing Unit
■ 38 GB DRAM
■ No disk drive

Overall
■ 7MW, $200M

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node 18,688

• • •

GPU GPU GPU

9

Titan Node Structure: CPU

CPU
■ 16 cores sharing common memory
■ Supports multithreaded programming
■ ~0.16 x 1012 floating-point operations per second (FLOPS)

peak performance

DRAM
Memory

10

Titan Node Structure: GPU

Kepler GPU
■ 14 multiprocessors
■ Each with 12 groups of 16 stream processors

● 14 X 12 X 16 = 2688
■ Single-Instruction, Multiple-Data parallelism

● Single instruction controls all processors in group
■ 4.0 x 1012 FLOPS peak performance

11

Titan Programming: Principle

Solving Problem Over Grid
■ E.g., finite-element system
■ Simulate operation over time

Bulk Synchronous Model
■ Partition into Regions

● p regions for p-node machine
■ Map Region per Processor

12

Titan Programming: Principle (cont)

Bulk Synchronous Model
■ Map Region per Processor
■ Alternate

● All nodes compute behavior of
region

» Perform on GPUs
● All nodes communicate values at

boundaries

P1 P2 P3 P4 P5

Communicate

Communicate

Communicate

Compute

Compute

Compute

13

Bulk Synchronous Performance

■ Limited by performance of
slowest processor

Strive to keep perfectly
balanced
■ Engineer hardware to be

highly reliable
■ Tune software to make as

regular as possible
■ Eliminate “noise”

● Operating system events
● Extraneous network activity

P1 P2 P3 P4 P5

Communicate

Communicate

Communicate

Compute

Compute

Compute

14

Titan Programming: Reality
System Level

■ Message-Passing Interface (MPI) supports node
computation, synchronization and communication

Node Level
■ OpenMP supports thread-level operation of node

CPU
■ CUDA programming environment for GPUs

● Performance degrades quickly if don’t have perfect
balance among memories and processors

Result
■ Single program is complex combination of

multiple programming paradigms
■ Tend to optimize for specific hardware

configuration

15

MPI Fault Tolerance

Checkpoint
■ Periodically store state of all

processes
■ Significant I/O traffic

Restore
■ When failure occurs
■ Reset state to that of last

checkpoint
■ All intervening computation

wasted

Performance Scaling
■ Very sensitive to number of

failing components

Restore

Wasted
Computation

Compute &
Communicate

P1 P2 P3 P4 P5

Checkpoint

Compute &
Communicate

16

Supercomputer Programming Model
■ Program on top of bare

hardware

Performance
■ Low-level programming to

maximize node performance
■ Keep everything globally

synchronized and balanced

Reliability
■ Single failure causes major

delay
■ Engineer hardware to

minimize failures

Hardware

Machine-Dependent
Programming Model

Software
Packages

Application
Programs

17

Data-Intensive  
Computing Landscape

Computational Intensity

Internet-Scale
 Computing

Personal
Computing

Cloud
Services

D
at

a
In

te
ns

ity

• Web search
• Mapping / directions
• Language translation
• Video streaming

Google Data Center

18

Internet Computing

Web Search
■ Aggregate text data from

across WWW
■ No definition of correct

operation
■ Do not need real-time

updating

Mapping Services
■ Huge amount of

(relatively) static data
■ Each customer requires

individualized
computation

Online Documents
■ Must be stored reliably
■ Must support real-time

updating
■ (Relatively) small data

volumes

19

Other Data-Intensive Computing Applications

Wal-Mart
■ 267 million items/day, sold at 6,000 stores
■ HP built them 4 PB data warehouse
■ Mine data to manage supply chain,

understand market trends, formulate
pricing strategies

LSST
■ Chilean telescope will scan entire sky every

3 days
■ A 3.2 gigapixel digital camera
■ Generate 30 TB/day of image data

20

Data-Intensive Application Characteristics

Diverse Classes of Data
■ Structured & unstructured
■ High & low integrity requirements

Diverse Computing Needs
■ Localized & global processing
■ Numerical & non-numerical
■ Real-time & batch processing

21

Google Data Centers

Dalles, Oregon
■ Hydroelectric power @ 2¢ / KW

Hr
■ 50 Megawatts
● Enough to power 60,000 homes

■ Engineered for low cost,
modularity & power efficiency

■ Container: 1160 server nodes,
250KW

22

Google Cluster

■ Typically 1,000−2,000 nodes

Node Contains
■ 2 multicore CPUs
■ 2 disk drives
■ DRAM

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

• • •

23

Hadoop Project
File system with files distributed across nodes

■ Store multiple (typically 3 copies of each file)
● If one node fails, data still available

■ Logically, any node has access to any file
● May need to fetch across network

Map / Reduce programming environment
■ Software manages execution of tasks on nodes

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

• • •

24

Map/Reduce Programming Model

■ Map computation across many objects
● E.g., 10

10

 Internet web pages
■ Aggregate results in many different ways

M

x1

M

x2

M

x3

M

xn

k1

Map

Reduce
k1

kr

• • •

• • •

Key-Value
Pairs

Dean & Ghemawat: “MapReduce: Simplified Data
Processing on Large Clusters”, OSDI 2004

25

Map/Reduce Operation
Characteristics

■ Computation broken into many,
short-lived tasks
● Mapping, reducing

■ Tasks mapped onto processors
dynamically

■ Use disk storage to hold
intermediate results

Strengths
■ Flexibility in placement,

scheduling, and load balancing
■ Can access large data sets

Weaknesses
■ Higher overhead
■ Lower raw performance

Map
Reduce

Map
Reduce

Map
Reduce

Map
Reduce

Map/Reduce

26

Map/Reduce Fault Tolerance
Data Integrity

■ Store multiple copies of each
file

■ Including intermediate results
of each Map / Reduce
● Continuous checkpointing

Recovering from Failure
■ Simply recompute lost result

● Localized effect
■ Dynamic scheduler keeps all

processors busy
Use software to build reliable

system on top of unreliable
hardware

Map
Reduce

Map
Reduce

Map
Reduce

Map
Reduce

Map/Reduce

27

Cluster Programming Model
■ Application programs written in

terms of high-level operations
on data

■ Runtime system controls
scheduling, load balancing, …

Scaling Challenges
■ Centralized scheduler forms

bottleneck
■ Copying to/from disk very

costly
■ Hard to limit data movement

● Significant performance factor

Hardware

Machine-Independent
Programming Model

Runtime
System

Application
Programs

28

Recent Programming Systems

Spark Project

■ at U.C., Berkeley
■ Grown to have large open source community

GraphLab
■ Started as project at CMU by Carlos Guestrin
■ Environment for describing machine-learning

algorithms
● Sparse matrix structure described by graph
● Computation based on updating of node values

29

Computing
Landscape Trends

Computational Intensity

D
at

a
In

te
ns

ity

Modeling &
 Simulation-Driven

 Science &
EngineeringTraditional

Supercomputing

Mixing simulation
with data analysis

30

Combining Simulation with Real Data

Limitations
■ Simulation alone: Hard to know if model is correct
■ Data alone: Hard to understand causality & “what if”

Combination
■ Check and adjust model during simulation

31

Real-Time Analytics

Millenium XXL Simulation
(2010)
■ 3 X 109 particles
■ Simulation run of 9.3 days on

12,228 cores
■ 700TB total data generated

● Save at only 4 time points
● 70 TB

■ Large-scale simulations
generate large data sets

What If?
■ Could perform data analysis

while simulation is running

Simulation
Engine

Analytic
Engine

http://gavo.mpa-garching.mpg.de/mxxlbrowser/sea/sea.html

32

Computing
Landscape Trends

Computational Intensity

Internet-Scale
 ComputingD

at
a

In
te

ns
ity Google Data Center

Sophisticated
data analysis

33

Example Analytic Applications

ClassifierImage Description

Microsoft Project Adam

TransducerEnglish
Text

German
Text

34

Data Analysis with Deep Neural Networks

Task:
■ Compute classification of

set of input signals

Training
■ Use many training samples of form input / desired output
■ Compute weights that minimize classification error

Operation
■ Propagate signals from input to output

35

DNN Application Example
Facebook DeepFace Architecture

36

Training DNNs

Characteristics
■ Iterative numerical

algorithm
■ Regular data

organization

Project Adam Training
■ 2B connections
■ 15M images
■ 62 machines
■ 10 days

0

5

10

15

20

0 5 10 15 20
0

100

200

300

400

0 5 10 15 20
0

5

10

15

20

0 5 10 15 20

× ➔

Model Size Training Data Training Effort

37

Trends

Computational Intensity

Internet-Scale
 ComputingD

at
a

In
te

ns
ity

Modeling &
 Simulation-Driven

 Science &
EngineeringTraditional

Supercomputing

Google Data Center

Sophisticated
data analysis

Mixing simulation
with real-world data

Convergence?

38

Challenges for Convergence
Supercomputers

■ Customized
■ Optimized for reliability

■ Source of “noise”
■ Static scheduling

■ Low-level, processor-
centric model

Data Center Clusters

■ Consumer grade
■ Optimized for low cost

■ Provides reliability
■ Dynamic allocation

■ High level, data-centric
model

Hardware

Run-Time System

Application Programming

39

Summary: Computation/Data Convergence

Two Important Classes of Large-Scale Computing
■ Computationally intensive supercomputing
■ Data intensive processing

● Internet companies + many other applications

Followed Different Evolutionary Paths
■ Supercomputers: Get maximum performance from available

hardware
■ Data center clusters: Maximize cost/performance over variety of

data-centric tasks
■ Yielded different approaches to hardware, runtime systems, and

application programming

A Convergence Would Have Important Benefits
■ Computational and data-intensive applications
■ But, not clear how to do it

40

TECHNOLOGY CHALLENGES

41

Moore’s Law

■ Basis for ever-increasing computer power
■ We’ve come to expect it will continue

42

Challenges to Moore’s Law: Technical

■ Must continue to shrink features sizes
■ Approaching atomic scale

Difficulties
■ Lithography at such small dimensions
■ Statistical variations among devices

• 2022: transistors with
4nm feature size

• Si lattice spacing
0.54nm

43

Challenges to Moore’s Law: Economic
Growing Capital Costs

■ State of art fab line ~$20B
■ Must have very high volumes to amortize

investment
■ Has led to major consolidations

44

Dennard Scaling
■ Due to Robert Dennard, IBM, 1974
■ Quantifies benefits of Moore’s Law

How to shrink an IC Process
■ Reduce horizontal and vertical dimensions by k
■ Reduce voltage by k

Outcomes
■ Devices / chip increase by k2

■ Clock frequency increases by k
■ Power / chip constant

Significance
■ Increased capacity and performance
■ No increase in power

45

End of Dennard Scaling

What Happened?
■ Can’t drop voltage below ~1V
■ Reached limit of power / chip in 2004
■ More logic on chip (Moore’s Law), but can’t make them run

faster
● Response has been to increase cores / chip

46

Research Challenges

Supercomputers
■ Can they be made more dynamic and adaptive?

● Requirement for future scalability
■ Can they be made easier to program?

● Abstract, machine-independent programming models

Data-Intensive Computing
■ Can they be adapted to provide better computational

performance?
■ Can they make better use of data locality?

● Performance & power-limiting factor

Technology / Economic
■ What will we do when Moore’s Law comes to an end for CMOS?
■ How can we ensure a stable manufacturing environment?

