Lecture 24:

The Future of High-Performance Computing

Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2016

Executive Order July 29, 2015

EXECUTIVE ORDER

CREATING A NATIONAL STRATEGIC COMPUTING INITIATIVE

By the authority vested in me as President by the Constitution and the laws of the United States of America, and to maximize benefits of highperformance computing (HPC) research, development, and deployment, it is hereby ordered as follows:

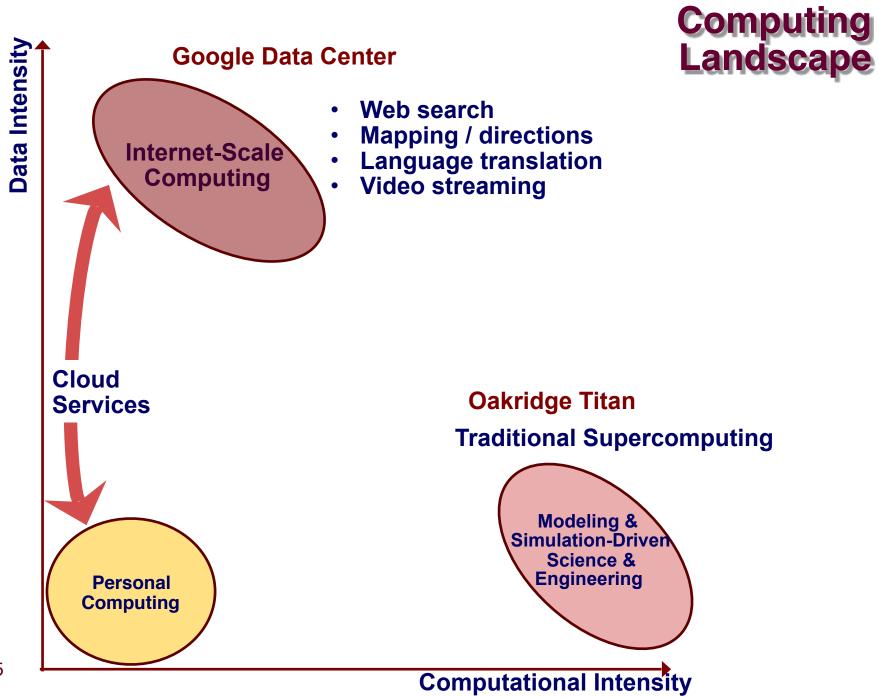
The NSCI is a whole-of-government effort designed to create a cohesive, multi-agency strategic vision and Federal investment strategy, executed in collaboration with industry and academia, to maximize the benefits of HPC for the United States.

Strategic Objectives

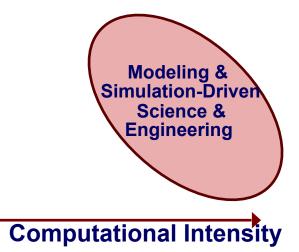
- (1) Accelerating delivery of a capable exascale computing system that integrates hardware and software capability to deliver approximately 100 times the performance of current 10 petaflop systems across a range of applications representing government needs.
- (2) Increasing coherence between the technology base used for modeling and simulation and that used for data analytic computing.
- (3) Establishing, over the next 15 years, a viable path forward for future HPC systems even after the limits of current semiconductor technology are reached (the "post-Moore's Law era").
- (4) Increasing the capacity and capability of an enduring national HPC ecosystem by employing a holistic approach that addresses relevant factors such as networking technology, workflow, downward scaling, foundational algorithms and software, accessibility, and workforce development.
- (5) Developing an enduring public-private collaboration to ensure that the benefits of the research and development advances are, to the greatest extent, shared between the United States Government and industrial and academic sectors.

Comparing Two Large-Scale Systems

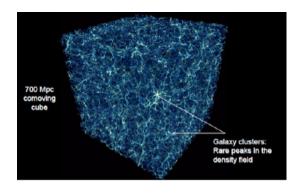
Oakridge Titan


Google Data Center

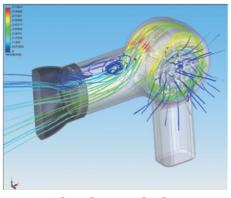
- Monolithic supercomputer (2nd fastest in world)
- Designed for computeintensive applications

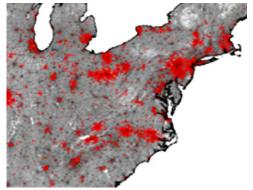


- Servers to support millions of customers
- Designed for data collection, storage, and analysis



Supercomputing Landscape

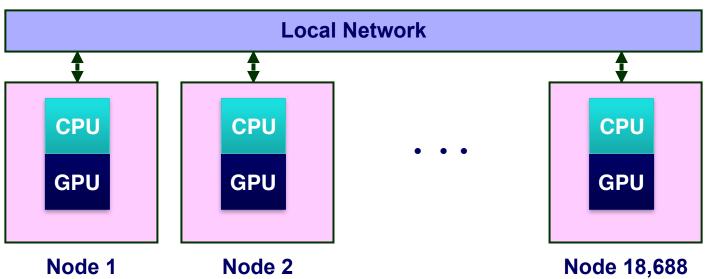

Oakridge Titan


Supercomputer Applications

Science

Industrial Products

Public Health


Simulation-Based Modeling

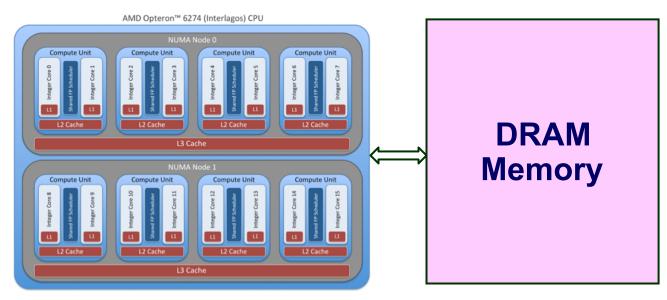
- System structure + initial conditions + transition behavior
- Discretize time and space
- Run simulation to see what happens

Requirements

- Model accurately reflects actual system
- Simulation faithfully captures model

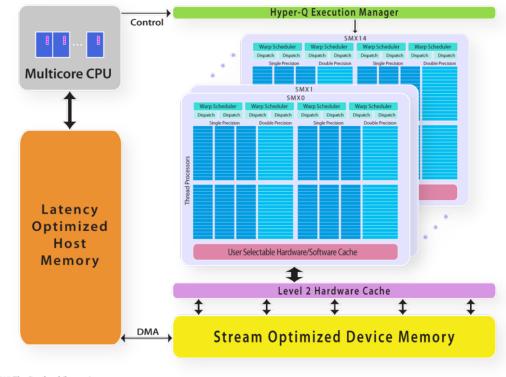
Titan Hardware

Each Node


- AMD 16-core processor
- nVidia Graphics Processing Unit
- 38 GB DRAM
- No disk drive

Overall

• 7MW, \$200M


Titan Node Structure: CPU

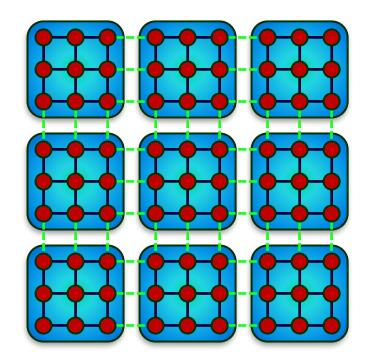
CPU

- 16 cores sharing common memory
- Supports multithreaded programming
- ~0.16 x 10¹² floating-point operations per second (FLOPS) peak performance

Titan Node Structure: GPU

Kepler GPU

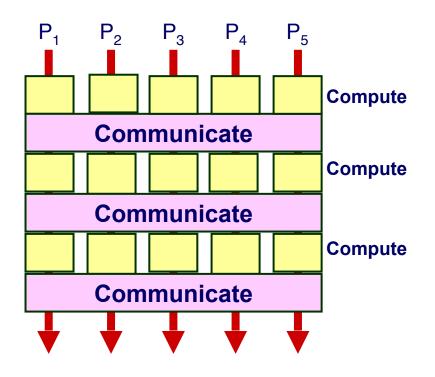
- 14 multiprocessors ©2013 The Portland Group, Inc.
- Each with 12 groups of 16 stream processors
 - 14 X 12 X 16 = 2688
- Single-Instruction, Multiple-Data parallelism
 - Single instruction controls all processors in group
- 4.0 x 10¹² FLOPS peak performance

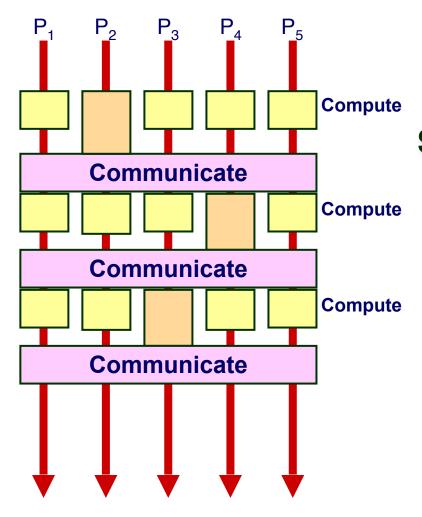

Titan Programming: Principle

Solving Problem Over Grid

- E.g., finite-element system
- Simulate operation over time

Bulk Synchronous Model


- Partition into Regions
 - p regions for p-node machine
- Map Region per Processor


Titan Programming: Principle (cont)

Bulk Synchronous Model

- Map Region per Processor
- Alternate
 - All nodes compute behavior of region
 - » Perform on GPUs
 - All nodes communicate values at boundaries

Bulk Synchronous Performance

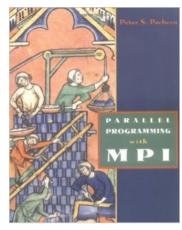
 Limited by performance of slowest processor

Strive to keep perfectly balanced

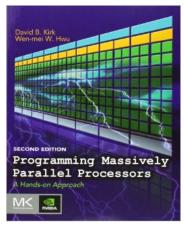
- Engineer hardware to be highly reliable
- Tune software to make as regular as possible
- Eliminate "noise"
 - Operating system events
 - Extraneous network activity

Titan Programming: Reality

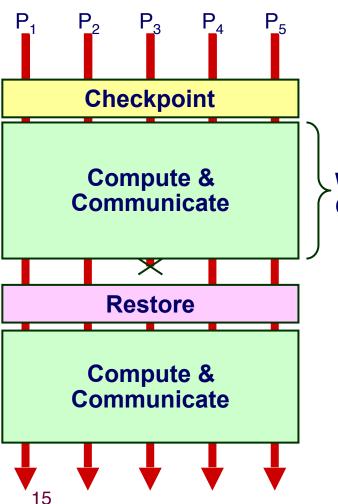
System Level


 Message-Passing Interface (MPI) supports node computation, synchronization and communication

Node Level


- OpenMP supports thread-level operation of node CPU
- CUDA programming environment for GPUs
 - Performance degrades quickly if don't have perfect balance among memories and processors

Result

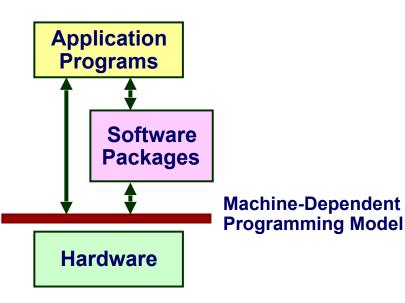

- Single program is complex combination of multiple programming paradigms
- Tend to optimize for specific hardware configuration

MPI Fault Tolerance

Checkpoint

- Periodically store state of all processes
- Significant I/O traffic

Restore

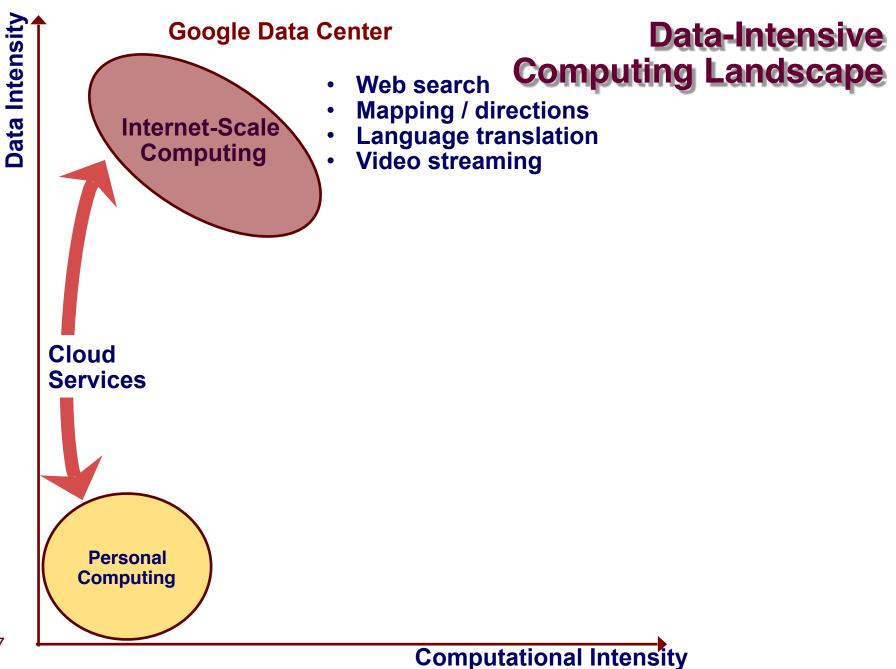

Wasted Computation

- When failure occurs
- Reset state to that of last checkpoint
- All intervening computation wasted

Performance Scaling

 Very sensitive to number of failing components

Supercomputer Programming Model


 Program on top of bare hardware

Performance

- Low-level programming to maximize node performance
- Keep everything globally synchronized and balanced

Reliability

- Single failure causes major delay
- Engineer hardware to minimize failures

Internet Computing

Web Search

- Aggregate text data from across WWW
- No definition of correct operation
- Do not need real-time updating

Mapping Services

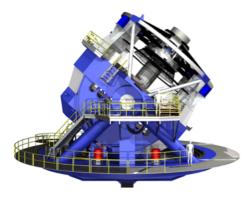
- Huge amount of (relatively) static data
- Each customer requires individualized computation

Online Documents


- Must be stored reliably
- Must support real-time updating
- (Relatively) small data volumes

Other Data-Intensive Computing Applications

Wal-Mart

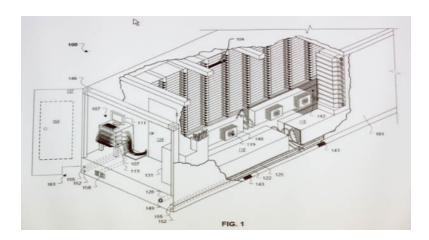

- 267 million items/day, sold at 6,000 stores
- HP built them 4 PB data warehouse
- Mine data to manage supply chain, understand market trends, formulate pricing strategies

LSST

- Chilean telescope will scan entire sky every 3 days
- A 3.2 gigapixel digital camera
- Generate 30 TB/day of image data

Data-Intensive Application Characteristics

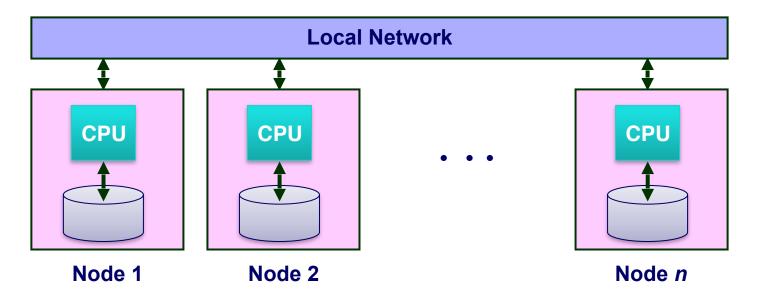
Diverse Classes of Data


- Structured & unstructured
- High & low integrity requirements

Diverse Computing Needs

- Localized & global processing
- Numerical & non-numerical
- Real-time & batch processing

Google Data Centers



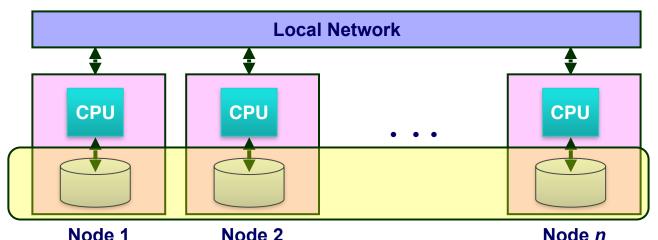
Dalles, Oregon

- Hydroelectric power @ 2¢ / KW Hr
- 50 Megawatts
- Enough to power 60,000 homes

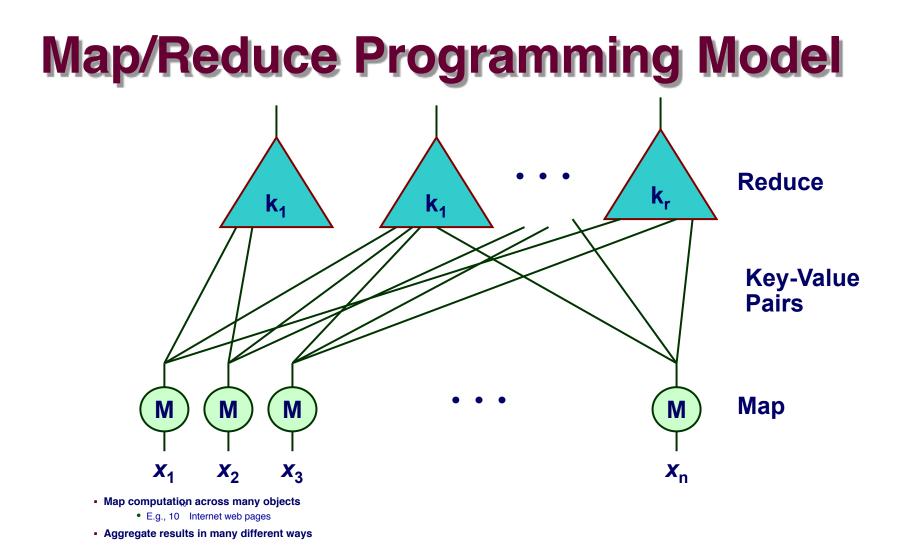
- Engineered for low cost, modularity & power efficiency
- Container: 1160 server nodes, 250KW

Typically 1,000–2,000 nodes

Node Contains

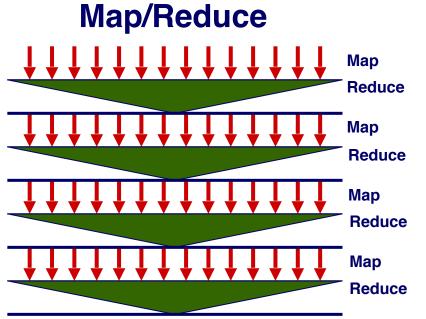

- 2 multicore CPUs
- 2 disk drives
- DRAM

Hadoop Project


File system with files distributed across nodes

- Store multiple (typically 3 copies of each file)
 - If one node fails, data still available
- Logically, any node has access to any file
 - May need to fetch across network

Map / Reduce programming environment


Software manages execution of tasks on nodes

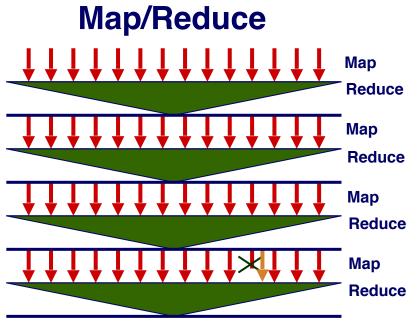
Dean & Ghemawat: "MapReduce: Simplified Data Processing on Large Clusters", OSDI 2004

Map/Reduce Operation

Characteristics

- Computation broken into many, short-lived tasks
 - Mapping, reducing
- Tasks mapped onto processors dynamically
- Use disk storage to hold intermediate results

Strengths


- Flexibility in placement, scheduling, and load balancing
- Can access large data sets

Weaknesses

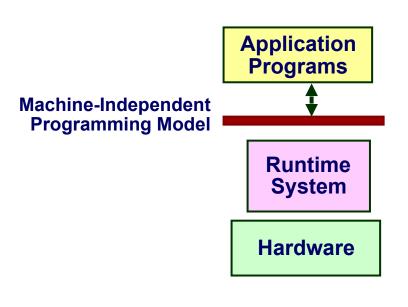
- Higher overhead
- Lower raw performance

Map/Reduce Fault Tolerance

- Store multiple copies of each file
- Including intermediate results of each Map / Reduce
 - Continuous checkpointing

Recovering from Failure

- Simply recompute lost result
 - Localized effect
- Dynamic scheduler keeps all processors busy


Use software to build reliable system on top of unreliable hardware

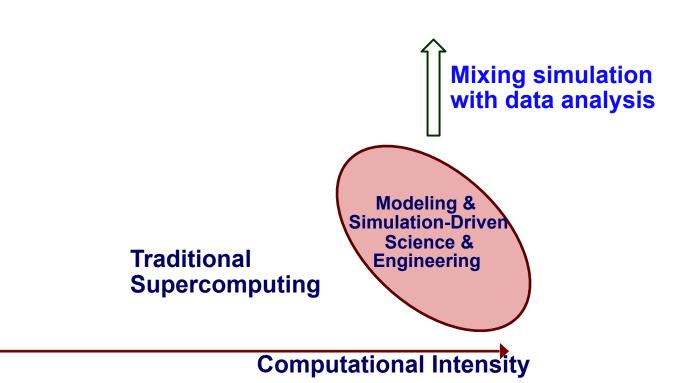
Cluster Programming Model

- Application programs written in terms of high-level operations on data
- Runtime system controls scheduling, load balancing, ...

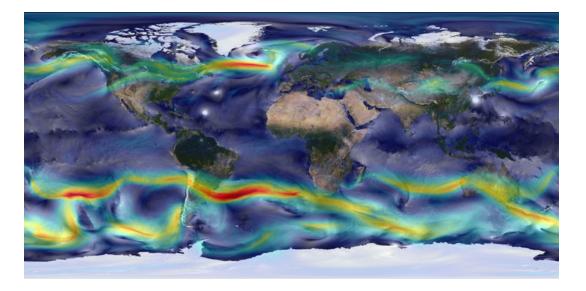
Scaling Challenges

- Centralized scheduler forms bottleneck
- Copying to/from disk very costly
- Hard to limit data movement
 - Significant performance factor

- at U.C., Berkeley
- Grown to have large open source community


GraphLab

Machine Learning Startup GraphLab Gets A New Name And An \$18.5M Check


Apache Spark

- Started as project at CMU by Carlos Guestrin
- Environment for describing machine-learning algorithms
 - Sparse matrix structure described by graph
 - Computation based on updating of node values

Computing Landscape Trends

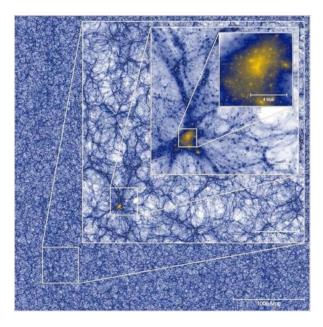
Combining Simulation with Real Data

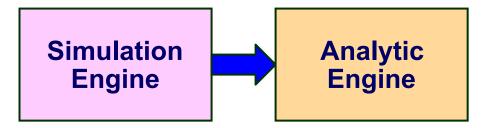
Limitations

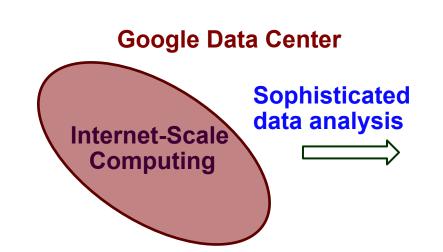
- Simulation alone: Hard to know if model is correct
- Data alone: Hard to understand causality & "what if"

Combination

Check and adjust model during simulation


Real-Time Analytics


Millenium XXL Simulation (2010)


- 3 X 10⁹ particles
- Simulation run of 9.3 days on 12,228 cores
- 700TB total data generated
 - Save at only 4 time points
 - 70 TB
- Large-scale simulations generate large data sets

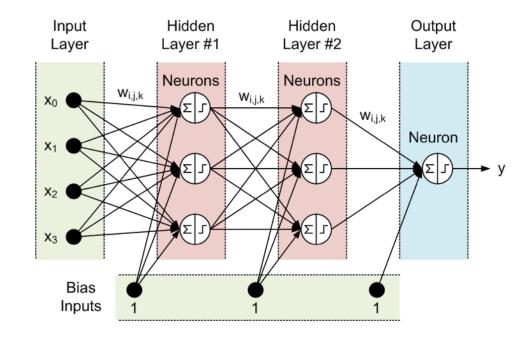
What If?

 Could perform data analysis while simulation is running

Computing Landscape Trends

Example Analytic Applications

Microsoft Project Adam


Arayüz Dili / Interface Language Help							
GTranslater							
Enter Text	Translation						
GTranslater is an Open Source language translation software for the desktop that uses Google's translation service that supports 89 languages in total. The interface of the portable software program is pretty basic providing two panes that are used to display the original and the translated text. The user can paste text into the left pane which will get translated by pressing F5. The translated text is then shown in the right pane. Language selectors are available below each pane that make it easy to switch languages. There is even an unknown entry for translating languages that cannot be identified positively by the user.	GTranslater ist ein Open-Source-Sprache Übersetzungs-Software für den Desktop, das Google-Übersetzung, die in insgesamt 89 Sprachen. Die Schnittstelle des tragbaren Software ist sehr grundlegenden mit zwei Scheiben, die verwendet werden, um das Original und den übersetzten Text. Der Benutzer kann Einfügen von Text in der linken Fensterbereich, die übersetzt durch Drücken der Taste F5. Der übersetzte Text wird dann im rechten Fensterbereich. Sprache Selektoren sind unter jedem Fenster, die se einfach machen, um Sprachen. Es gibt sogar einen unbekannten Eintrag für das Übersetzen von Sprachen, die nicht identifiziert werden kann positiv durch den Benutzer.						
ENGLISH V	> GERMAN						

Data Analysis with Deep Neural Networks

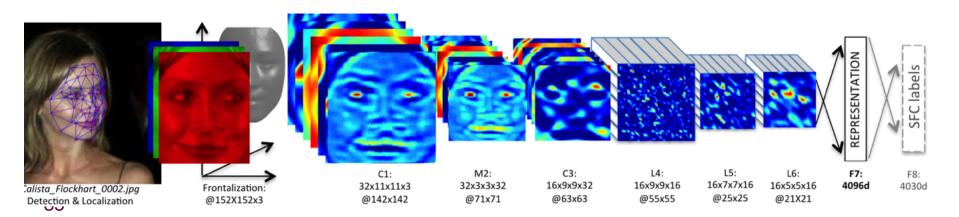
Task:

 Compute classification of set of input signals

Training

- Use many training samples of form input / desired output
- Compute weights that minimize classification error

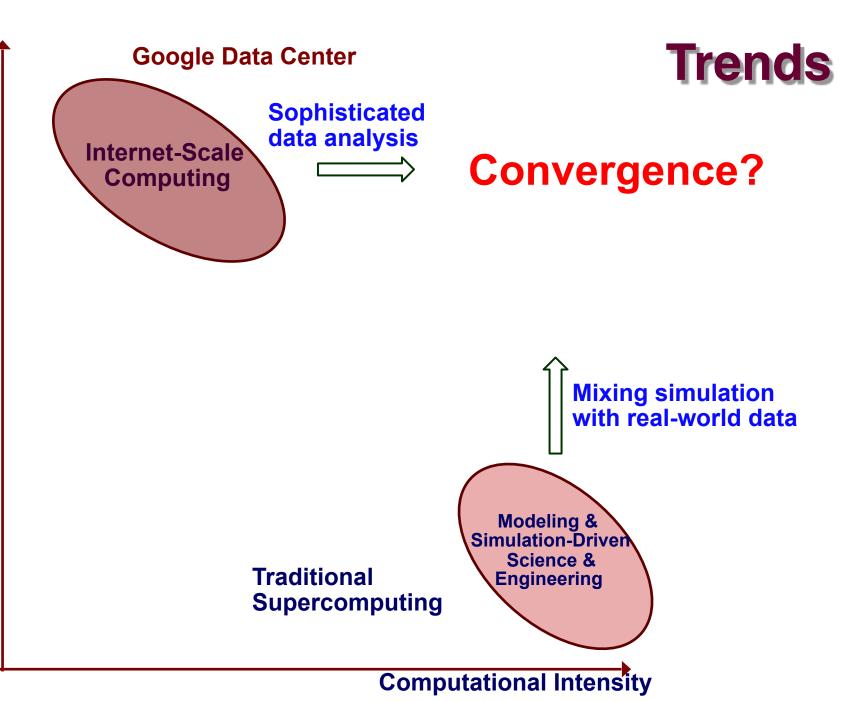
Operation


Propagate signals from input to output

DNN Application Example

Facebook DeepFace Architecture

Training DNNs


Characteristics

- Iterative numerical algorithm
- Regular data organization

Project Adam Training

- 2B connections
- 15M images
- 62 machines
- 10 days

Challenges for Convergence

Supercomputers

Data Center Clusters

Hardware

- Customized
- Optimized for reliability

- Consumer grade
- Optimized for low cost

Run-Time System

- Source of "noise"
- Static scheduling

- Provides reliability
- Dynamic allocation

Application Programming

 Low-level, processorcentric model High level, data-centric model

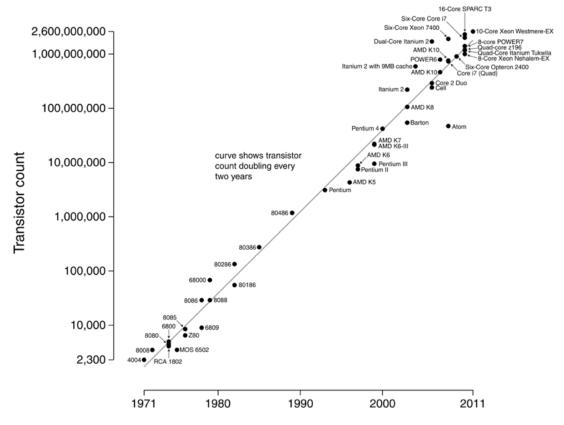
Summary: Computation/Data Convergence

Two Important Classes of Large-Scale Computing

- Computationally intensive supercomputing
- Data intensive processing
 - Internet companies + many other applications

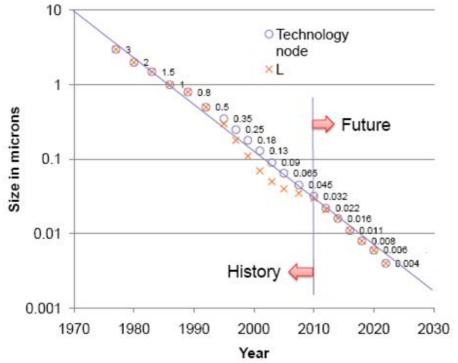
Followed Different Evolutionary Paths

- Supercomputers: Get maximum performance from available hardware
- Data center clusters: Maximize cost/performance over variety of data-centric tasks
- Yielded different approaches to hardware, runtime systems, and application programming


A Convergence Would Have Important Benefits

- Computational and data-intensive applications
- But, not clear how to do it

TECHNOLOGY CHALLENGES


Microprocessor Transistor Counts 1971-2011 & Moore's Law

Date of introduction

- Basis for ever-increasing computer power
- We've come to expect it will continue

Challenges to Moore's Law: Technical

- 2022: transistors with 4nm feature size
- Si lattice spacing 0.54nm

- Must continue to shrink features sizes
- Approaching atomic scale

Difficulties

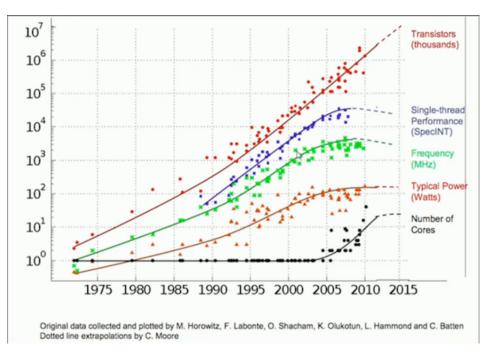
- Lithography at such small dimensions
- Statistical variations among devices

Challenges to Moore's Law: Economic

200	Growing Capital Costs					
Altis Semiconductor	 State of art fab line ~\$20B 					
Dongbu HiTek	Dongbu HiTek	 Must have very high volumes to amortize investment Has led to major consolidations 				
Grace Semiconductor	Grace Semiconductor					
SMIC	SMIC			•		
UMC	UMC		Ĩ.			
TSMC	TSMC	SMIC				
Globalfoundries	Globalfoundries	UMC				
Seiko Epson	Seiko Epson	TSMC				
Freescale	Freescale	Globalfoundries	SMIC			
Infineon	Infineon	Infineon	UMC			
Sony	Sony	Sony	TSMC			
Texas Instruments	Texas Instruments	Texas Instruments	Globalfoundries			
Renesas (NEC)	Renesas	Renesas	Renesas			
IBM	IBM	IBM	IBM	UMC		
Fujitsu	Fujitsu	Fujitsu	Fujitsu	TSMC		
Toshiba	Toshiba	Toshiba	Toshiba	Globalfoundries	TSMC	
STMicroelectronics	STMicroelectronics	STMicroelectronics	STMicroelectronics	STMicroelectronics	Globalfoundries	
Intel	Intel	Intel	Intel	Intel	Intel	
Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	
130nm	90nm	65nm	45/40nm	32/28nm	22/20nm	

Dennard Scaling

- Due to Robert Dennard, IBM, 1974
- Quantifies benefits of Moore's Law
- How to shrink an IC Process
 - Reduce horizontal and vertical dimensions by k
 - Reduce voltage by k


Outcomes

- Devices / chip increase by k²
- Clock frequency increases by k
- Power / chip constant

Significance

- Increased capacity and performance
- No increase in power

End of Dennard Scaling

What Happened?

- Can't drop voltage below ~1V
- Reached limit of power / chip in 2004
- More logic on chip (Moore's Law), but can't make them run faster
 - Response has been to increase cores / chip

Research Challenges

Supercomputers

- Can they be made more dynamic and adaptive?
 - Requirement for future scalability
- Can they be made easier to program?
 - Abstract, machine-independent programming models

Data-Intensive Computing

- Can they be adapted to provide better computational performance?
- Can they make better use of data locality?
 - Performance & power-limiting factor

Technology / Economic

- What will we do when Moore's Law comes to an end for CMOS?
- How can we ensure a stable manufacturing environment?