CMU 15-418/618: Parallel Computer Architecture and Programming
Practice Exercise 1

A Task Queue on a Multi-Core, Multi-Threaded CPU

Problem 1. (15 points):

The figure below shows a simple single-core CPU with an 16 KB L1 cache and execution contexts for up
to two threads of control. Core 1 executes threads assigned to contexts TO-T1 in an interleaved fashion
by switching the active thread only on a memory stall); Memory bandwidth is infinitely high in this
system, but memory latency is 125 clocks. A cache hit is only 1 cycle. A cache line is 4 bytes. The cache
implements a least-recently used (LRU) replacement policy.

to memory

16 KB L1 cache

Core 1

Exec

TO || T1

You are implementing a task queue for a system with this CPU. The task queue is responsible for execut-
ing large batches of independent tasks that are created as a part of a bulk launch (much like how an ISPC
task launch creates many independent tasks). You implement your task system using a pool of worker
threads, all of which are spawned at program launch. When tasks are added to the task queue, the worker
threads grab the next task in the queue by atomically incrementing a shared counter next_task_id. Pseu-
docode for the execution of a worker thread is shown below.

mutex queue_lock;

int next_task_id; // set to zero at time of bulk task launch

int total_tasks; // set to total number of tasks at time of bulk task launch
intx task_args[MAX_NUM_TASKS]; // initialized elsewhere

while (1) {
int my_task_id;
LOCK (queue_lock) ;
my_task_id = next_task_id++;
UNLOCK (queue_lock) ;
if (my_task_id < total_tasks)
TASK_A(my_task_id, task_args[my_task_id]);

else
break;

Page 1

A. (3 pts) Consider one possible implementation of TASK_A from the code on the previous page:
function TASK_A(int task_id, intx X) {
for (int i=0; i<1000; i++) {
for (int j=0; j<8192; j++) {
load X[j] // assume this is a cold miss when i=0
// ... 25 non-memory instructions using X

}
}

The inner loop of TASK_A scans over 32 KB of elements of array X, performing 25 arithmetic instruc-
tions after each load. This process is repeated over the same data 1000 times. Assume there are no
other significant memory instructions in the program and that each task works on a completely
different input array X (there is no sharing of data across tasks). Remember the cache is 16 KB,
a cache line is 4 bytes, and the cache implements a LRU replacement policy. Assume the CPU
performs no prefetching.

In order to process a bulk launch of TASK_A, you create two worker threads, WT0 and WT1, and as-
sign them to CPU execution contexts TO and T1. Do you expect the program to execute substantially
faster using the two-thread worker pool than if only one worker thread was used? If so, please cal-
culate how much faster. (Your answer need not be exact, a back-of-the envelop calculation is fine.)
If not, explain why.

(Careful: please consider the program’s execution behavior on average over the entire program’s execution
(“steady state” behavior). Past students have been tricked by only thinking about the behavior of the first loop
iteration of the first task.) It may be helpful to draw when threads are running and stalled waiting for a load
on the diagram below.

TO

T1

Time
(clocks)

Page 2

B. (3 pts) Now consider the case where the program is modified to contain 10,000 instructions in the
innermost loop. Do you expect your two-thread worker pool to execute the program substantially
faster than a one thread pool? If so, please calculate how much faster (your answer need not be
exact, a back-of-the envelop calculation is fine). If not, explain why.

C. (8 pts) Now consider the case where the cache size is changed to 128 KB and you are running
the original program from Part A (25 math instructions in the inner loop). When running the
program from part A on this new machine, do you expect your two-thread worker pool to execute
the program substantially faster than a one thread pool? If so, please calculate how much faster (your
answer need not be exact, a back-of-the envelop calculation is fine). If not, explain why.

TO

T1

Time
(clocks)

Page 3

D. (3 pts) Now consider the case where the L1 cache size is changed to 48 KB. Assuming you can-
not change the implementation of TASK_A from Part A, how should your system schedule tasks
to substantially improve program performance over the two-worker pool approach? Why does this
improve performance and how much higher throughput does your solution achieve?

E. (3 pts) Now consider the case where the task system is running programs on a dual-core processor.
Each core is two-way multi-threaded, so there are a total of four execution contexts (T0-T3). Each
core has a 128 KB cache.

to memory
| |
128 KB cache 128 KB cache
[[
Core 1 Core 2
TO || T1 T2 || T3

If you maintain your two-worker thread implementation of the task system as discussed in prior
questions, to which execution contexts do you assign the two worker threads WT0 and WT1? Why?
Given your assignment, how much better performance do you expect than if your worker pool
contained only one thread?

Page 4

Because The Professor with the Most ALUs (Sometimes) Wins

Problem 2. (15 points):

Consider the following ISPC code that computes az? + bz + ¢ for elements x of an entire input array.

void polynomial(float a, float b, float c,
uniform float x[1, uniform float output[], int elementsPerTask) {
uniform int start = taskIndex * elementsPerTask;
uniform int end = start + elementsPerTask;

foreach (i = start ... end) {
output[i] = (a * x[i] * x[i]) + (b * x[i]) + ¢; // 5 arithmetic ops
}
}

// assume N is very, very large, and is a multiple of 1024

void run(int N, float a, float b, float c, floatx input, float* output) {
uniform int elementsPerTask = 1024;
launch[N/elementsPerTask] polynomial(a, b, ¢, input, output, elementsPerTask);

}

Professor Kayvon, seeking to capture the highly lucrative polynomial evaluation market, builds a multi-
core CPU packed with ALUs. "The professor with the most ALUs wins, he yells!” The processor has:

e 4 cores clocked at 1 GHz, capable of one 32-wide SIMD floating-point instruction per clock (1 addi-
tion, 1 multiply, etc.)

e Two hardware execution contexts per core

e A 1 MB cache per core with 128-byte cache lines (In this problem assume allocations are cache-line
aligned so that each SIMD vector load or store instruction will load one cache line). Assume cache
hits are 0 cycles.

e The processor is connected to a memory system providing a whopping 512 GB/sec of BW

e The latency of memory loads is 95 cycles. (There is no prefetching.) For simplicity, assume the
latency of stores is 0.

A. (1 pt) What is the peak arithmetic throughput of Prof. Kayvon'’s processor?

B. (1 pt) What should Prof. Kayvon set the ISPC gang size to when running this ISPC program on this
processor?

Page 5

C. (8 pts) Prof. Kayvon runs the ISPC code on his new processor, the performance of the code is
not good. What fraction of peak performance is observed when running this code? Why is peak
performance not obtained?

D. (3 pts) Prof. Bryant sees Kayvon’s struggles, and sees an opportunity to start his own polyno-
mial computation processor company, RandyNomial that achieves double the performance of Prof.
Kayvon'’s chip. “Oh shucks, now I'll have to double the number of cores in my chip, that will cost a
fortune.” Kayvon says.

TA Ravi writes Kayvon an email that reads “There’s another way to achieve peak performance with
your original design, and it doesn’t require adding cores.” Describe a change to Prof. Kayvon’s
processor that causes it to obtain peak performance on the original workload. Be specific about how
you’'d realize peak performance (give numbers).

Page 6

The following year Prof. Kayvon makes a new version of his processor. The new version is the exact
same quad-core processor as the one described at the beginning of this question, except now the
chip supports 64 hardware execution contexts per core. Also, the ISPC code is changed to compute
a more complex polynomial. In the code below assume that coeffs is an array of a few hundred
polynomial coefficients and that expensive_polynomial involves 100’s of arithmetic operations.
void polynomial(uniform float coeffs[], uniform float input[],
uniform float output[], int elementsPerTask) {

uniform int start = taskIndex *x elementsPerTask;

uniform int end = start + elementsPerTask;

foreach (i = start ... end) {

output[i] = expensive_poly(coeffs, input[i]); // 100's of arithmetic ops

}

}

void run(int N, float* coeffs, float* input, float*x output) {
uniform int elementsPerTask = 1024;
launch[N/elementsPerTask] polynomial(coeffs, input, output, elementsPerTask);

}

E. (1 pt) What is the peak arithmetic throughput of Prof. Kayvon’s new processor?

F. (3 pts) Imagine running the program with N=8x1024 and N = 64x1024. Assuming that the system
schedules worker threads onto available execution contents in an efficient manner, do either of the
two values of NV result in the program achieving near peak utilization of the machine? Why or why
not? (For simplicity, assume task launch overhead is negligible.)

G. (3 pts) Now consider the case where N=9x1024. Now what is the performance problem? Describe
is simple code change that results in the program obtaining close to peak utilization of the machine.
(Assume task launch overhead is negligible.)

Page7

