
CMU 15-418/618: Parallel Computer Architecture and Programming
Practice Exercise 3

Problem 1: Optimizing a Multi-Threaded Program (10 pts)

Your friend writes the following multi-threaded C++ program that combines two images image1 and
image2. The implementation uses three threads, and each thread is responsible for processing a single
channel (red, green, or blue) of the image. Notice that this processing requires the thread to loop over the
image data MAX_ITERS times.

struct Pixel {
float r, g, b;

};

#define MAX_ITERS 1000
#define IMAGE_SIZE 64 * 64
float my_func(float, float);
Pixel *image1, *image2;

void workerR() {
for (int iters=0; iters<MAX_ITERS; iters++)

for (int i=0; i<IMAGE_SIZE; i++)
result[i].r += my_func(image1[i].r, image2[i].r);

}

void workerG() {
for (int iters=0; iters<MAX_ITERS; iters++)

for (int i=0; i<IMAGE_SIZE; i++)
result[i].g += my_func(image1[i].g, image2[i].g);

}

void workerB() {
for (int iters=0; iters<MAX_ITERS; iters++)

for (int i=0; i<IMAGE_SIZE; i++)
result[i].b += my_func(image1[i].b, image2[i].b);

}

int main() {
image1 = new Pixel[IMAGE_SIZE];
image2 = new Pixel[IMAGE_SIZE];
result = new Pixel[IMAGE_SIZE];

// ... initialize result, image1, image2 here ...

pthread_t t0, t1;
pthread_create(&t0, NULL, workerR, NULL);
pthread_create(&t1, NULL, workerG, NULL);
workerB();
pthread_join(t0, NULL);
pthread_join(t1, NULL);

// ... use ’result’ image here ...
}

Page 1



A. (5 pts) Your friend runs this program on the cache coherent quad-core Intel processor. Given that the
problem is embarrassingly parallel and assuming the images are small enough that all three images
can fit in the private L2 cache of each core, your friend expects near perfect (3×) speedup. They are
shocked when they don’t obtain a good speedup. What is the cause of this suboptimal behavior?

B. (5 pts) Modify the program to correct the performance problem you identified in part A. You are
allowed to modify the data structures used in the code but you are not allowed to change what
computations are performed by each thread. That is, workerR must still process the red channel of
the image, workerGmust still process the green channel, etc. You only need to describe your solution
in text or pseudocode (compilable C++ is not required). (Hint: there is a very simple change.)

Page 2



Problem 2: Particle Simulation (10 pts)

Consider the following code that uses a simple O(N2) algorithm to compute forces due to gravitational
interactions between all N particles in a particle simulation. One important detail of this algorithm is that
force computation is symmetric (gravity(i,j) = gravity(j,i)). Therefore, iteration i only needs to
compute interactions with particles with index j, where i<j. As a result, the work done by the algorithm
is N2/2 rather than N2.

In this problem, assume the code is run on a dual-core processor, with infinite memory bandwidth.
The processor implements invalidation-based cache coherence across the cores. The cache line size is
64 bytes.

struct Particle {
float force; // for simplicity, assume force is represented as a single float

};

Particle particles[N];

void compute_forces(int threadId) {

// thread 0 takes first half, thread 1 takes second half
int start = threadId * N/2;
int end = start + N/2;

for (int i=start; i<end; i++) {

// only compute forces for each pair (i,j) once, then accumulate force
// into *both* particle i and j

for (int j=i+1; j<N; j++) {
float force = gravity(i, j);
particles[i] += force;
particles[j] += force;

}
}

}

The question is on the next page.

Page 3



A. (4 pts) The function compute_forces above is run by two threads on a dual-core processor. There
is a correctness problem with the code. Using only the synchronization primitive:

atomicAdd(float* addr, float val)

Fix the correctness bug in the code. However, to get full credit your solution should be efficient—it
should do better than making N2 calls to atomic_add (at least by an integer constant factor). Solu-
tions that incur significant storage overhead or increase the amount of work done by the algorithm
are not allowed.

B. (2 pts) There is also a significant performance problem in the implementation that results in a
speedup that is significantly lower than 2× on the two-core processor. What is the problem?

Page 4



C. (4 pts) Give an implementation of compute_forces that (1) achieves good workload balance be-
tween the two threads (2) does not significantly increase the amount of work performed (work
should be no more than N2/2 + O(N)) and (3) does not use fine-grained atomicAdd synchroniza-
tion. However, you are allowed to allocate O(N) storage and use a barrier. Pseudocode is fine.

Page 5


