CMU 15-418/618: Parallel Computer Architecture and Programming
Practice Exercise 6

Problem 1: Seeing How the Studying is Going

The night before the exam, Prof. Kayvon inspects the 15-418 web site logs to see if his students are
studying. The site generates a log of all lecture slide comments, with the following format per line.

studentid lecture_title slide_number comment

The log file is large (lots of studying! yay!), and is partitioned into 100 GB chunks, named chunk_xxx. txt
stored in a shared file system accessible to all nodes on the latedays cluster. Below is Prof. Kayvon'’s
correct, but inefficient, code to count the number of comments posted on a particular slide. Notice the
program is written a very Spark-like style (notice pieces of code that mimick Spark’s load, map, filter,
and count operators generate arrays). The code below is run by all cluster nodes.

In the code below, assume vector<T> is an array of elements of type T that supports size() and append(T)

void barrier(); is a barrier across all nodes in the cluster
int receivelnt(int src); receives an integer from node src
int sendInt(int dst, int value); sends an integer to node dst

// OPERATION 1: LOAD 100 GB FROM DISK //////////1177/7/1/7/7/17/7/11/7//717/1///7///

FILEx file = // open chunk_xxx.txt, where xxx is the id of the current node
vector<string> lines;
while (!end_of_file(file))

lines.append(file.readlLine());

barrier(); // OPERATION 2: FILTER /////////////////7////7//////7//////7///////////
// Assume views is 30 GB after the filter (lots of long comments)

vector<string> views;
for (int i=0; i<lines.size(); i++) {
string lecture_title;

int slide_number;
parseLine(lines[i], &lecture_title, &slide_number); // extract title and slide number
if (lecture_title == "In-Memory Distributed Computing using Spark’’ && slide_number == 28)
views.append(lines[i]);
}
barrier();

// code continued on next page ...

Page 1

// OPERATION 3: MAP: EXTRACT COMMENT ///////////////// (Assume comments is 20 GB)

vector<string> comments;

for (int i=0; i<views.size(); i++) {
string comment;
parseComment(views[i], &comment);
comments.append(comment);

}
barrier(); // OPERATION 4: COUNT COMMENTS //////////////////////////7////////////

if (get_node_id() == 0) {
int count = comments.size();
for (int i=1; i<num_nodes; i++)
count += receiveInt(i);
printf("%sd\n’',count);
} else
sendInt (0, comments.size());

A. (4 pts) Prof. Kayvon runs the program on latedays and it immediately fails due to running out of
memory. (latedays nodes only have 16 GB of RAM). One answer would be to store the multi-GB
intermediate arrays to disk, but there’s a much better solution. Please rewrite the program so that it
runs efficiently on the cluster. (Your implementation should not exceed a node’s memory capacity,
and it should avoid unnecessary synchronization. Very rough pseuocode that indicates the order
of computations is fine. No need to be detailed.)

B. (1 pt) What is the per-node memory consumption of your implementation assuming no line of the
log exceeds 1 MB? (a simple estimate is fine)

Page 2

C. (4 pts) Now Prof. Kayvon wants to process the log to produce a set of files on disk where each
file corresponds to a single slide from the Spark lecture, and contains a list of comments for that
slide. In other words, there will be files for: slide_0.txt, slide_1.txt, slide_2.txt, etc. Please
assume:

e Each file is written entirely by exactly one node in the cluster, which is determined by the
function hashToNode (int x) which returns the node responsible for writing slide_x. txt.

e The file is written in a single call to the function
writeFile(int slideNum, vector<string> comments).

For simplicity, you can assume that nodes now have an infinite amount of memory. Sketch an
algorithm for executing this analysis operation on the cluster. Very brief pseudocode is desired (we
don’t want to read very detailed code), but we do want to know the details of what (if any) data
nodes exchange, and about any barriers across nodes that are required in your implementation.

D. (1 pts) Contrast the amount of memory your implementation in part C uses compared to your im-
plementation in part A. What is the fundamental reason for this difference? (in other words, why
can’t you achieve the footprint efficiencies observed before?)

Page 3

Problem 2: Controlling DRAM

Consider a computer with a single DIMM containing eight 1 MB DRAM chips (8 MB total capacity).
Each DRAM chip has one bank and row size 2 kilobits (256 bytes). As discussed in class, the DIMM is
connected to the memory controller via a 64-bit bus, with 8-bits per cycle transferred from each chip.

Assume that:

e Contiguous 1 MB regions of the physical address space are mapped to a single DRAM chip. 256
consecutive physical address space bytes are in a row. 1048576 consecutive bytes fill a DRAM chip.

e Physical address 0 maps to chip 0, row 0, column 0. Physical address 1048576 maps to chip 1, row
0, column 0, etc.

Given these assumptions, reading a 64-byte cache line beginning at address X requires the following
memory-controller logic, presented in C code below: (the data ends up in cache_line)

char cache_line[64];

// compute DRAM clip, row, col for address X
int chip = X / 1048576;

int row = (X % 1048576) / 256;

int col = (X % 1048576) 256

o°

for (int i=0; i<64; i++) {
// Read one byte from each DRAM chip at given row and column (eight in total)
// so that the byte from chip j ends up in ‘from_dram[j]‘. Assume necessary
// DRAM row and column activations are performed inside DIMM_READ_FROM_CHIPS.

char from_dram[8];
DIMM_READ_FROM_CHIPS(row, column, from_dram);

cache_line[i] = from_dram[chip];

column++; // move to next byte in column

Questions are on next page...

Page 4

A. (2 pts) Explain why 64 iterations (64 reads from the DRAM chips) are required to populate the buffer

cache_line.

B. (8 pts) Now assume the address space is byte-interleaved across the DRAM chips as discussed
in class and shown in the Figure below. (Byte X in the address space is stored on chip X % 8.)
Please provide C-like pseudocode for reading the 64-byte cache line at address X from DRAM into
cache_line. Your code should make a series of calls to DIMM_READ_FROM_CHIPS.

Hint: Recall that each DRAM chip row is 256 bytes.

Page 5

[]| | [[[[1| |]| []
JELLRR LS Rt L8 % P 88 S L% L R 8RRt § E 3P E M £ 2 L8333 S AR e Y
i bits0:7 | :bits8:15; :bits16:23; :hits24:31; :bits32:39; :hits40:47; :bits48:55; :bits 56:63;
64 bit
memory bus

C. (2 pts) How much higher “effective bandwidth” is achieved using the interleaved mapping from
part B than the original blocked mapping from part A?

D. (3 pts) Imagine the byte interleaved memory system from part B is connected to a dual-core CPU.
The memory controller uses a naive round-robin policy to schedule incoming memory requests
from the cores (it services a request from core 0, then core 1, then core 0, etc.) All requests from the
same core are processed in FIFO order.

Both cores execute the following C code on different 4 MB arrays. Simply put, each thread is
linearly scanning through different regions of memory.

int A[N]; // let N = 1M, so this array is 4MB
int sum = 0; // assume ’'sum’ is register allocated
for (int i=0; i<N; i++)

sum += A[i];

Assume that the cores request data from memory at granularity of 8 bytes. On this system, you
observe that when running two threads, the overall aggregate bandwidth from the memory system
is lower than when one thread is executing the same code. Why might this be the case? (Hint: we
are looking for an answer the pertains to DRAM chip behavior: consider locality, but which kind?)

Page 6

