Lecture 3:
Parallel Programming Abstractions
(and their corresponding HW/SW implementations)

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2017
Tunes

Replaying last week’s tunes! (since we now have audio)

Leela James
“Long Time Coming”
(A Change is Gonna Come)

XX
“Lips”
(I See You)
Today’s theme is a critical idea in this course.

And today’s theme is:

Abstraction vs. implementation

Conflating abstraction with implementation is a common cause for confusion in this course.
An example:
Programming with ISPC
ISPC

- Intel SPMD Program Compiler (ISPC)
- SPMD: single program multiple data

- http://ispc.github.com/
Compute \(\sin(x) \) using Taylor expansion:
\[
\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots
\]
for each element of an array of \(N \) floating-point numbers

```c
void sinx(int N, int terms, float* x, float* result)
{
    for (int i=0; i<N; i++)
    {
        float value = x[i];
        float numer = x[i] * x[i] * x[i];
        int denom = 6;  // 3!
        int sign = -1;

        for (int j=1; j<=terms; j++)
        {
            value += sign * numer / denom;
            numer *= x[i] * x[i];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }

        result[i] = value;
    }
}
```
Compute $\sin(x)$ using Taylor expansion: $\sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...$

C++ code: main.cpp

```cpp
#include "sinx_ispc.h"

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);
```

ISPC code: sinx.ispc

```ispc
export void sinx(
    uniform int N,
    uniform int terms,
    uniform float* x,
    uniform float* result)
{
    // assume N % programCount = 0
    for (uniform int i=0; i<N; i+=programCount)
    {
        int idx = i + programIndex;
        float value = x[idx];
        float numer = x[idx] * x[idx] * x[idx];
        uniform int denom = 6; // 3!
        uniform int sign = -1;

        for (uniform int j=1; j<=terms; j++)
        {
            value += sign * numer / denom
            numer *= x[idx] * x[idx];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }
        result[idx] = value;
    }
}
```

SPMD programming abstraction:

Call to ISPC function spawns “gang” of ISPC “program instances”

All instances run ISPC code concurrently

Upon return, all instances have completed
sin(x) in ISPC

Compute sin(x) using Taylor expansion: $\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots$

C++ code: main.cpp

```cpp
#include "sinx_ispc.h"

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);
```

SPMD programming abstraction:

- Call to ISPC function spawns “gang” of ISPC “program instances”
- All instances run ISPC code concurrently
- Upon return, all instances have completed

Sequential execution (C code)

Call to sinx()
Begin executing programCount instances of sinx() (ISPC code)

sinx() returns.
Completion of ISPC program instances.
Resume sequential execution

Sequential execution (C code)

In this illustration `programCount = 8`
sin(x) in ISPC

“Interleaved” assignment of array elements to program instances

C++ code: main.cpp

```cpp
#include "sinx_ispc.h"

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);
```

ISPC code: sinx.ispc

```ispc
export void sinx(
    uniform int N,
    uniform int terms,
    uniform float* x,
    uniform float* result)
{
    // assumes N % programCount = 0
    for (uniform int i=0; i<N; i+=programCount)
    {
        int idx = i + programIndex;
        float value = x[idx];
        float numer = x[idx] * x[idx] * x[idx];
        uniform int denom = 6; // 3!
        uniform int sign = -1;

        for (uniform int j=1; j<=terms; j++)
        {
            value += sign * numer / denom
            numer *= x[idx] * x[idx];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }
        result[idx] = value;
    }
}
```

ISPC Keywords:

programCount: number of simultaneously executing instances in the gang (uniform value)

programIndex: id of the current instance in the gang. (a non-uniform value: “varying”)

uniform: A type modifier. All instances have the same value for this variable. Its use is purely an optimization. Not needed for correctness.
Interleaved assignment of program instances to loop iterations

“Gang” of ISPC program instances

In this illustration: gang contains four instances: \texttt{programCount} = 4
ISPC implements the gang abstraction using SIMD instructions

C++ code: main.cpp

```cpp
#include "sinx_ispc.h"

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);
```

SPMD programming abstraction:

- Call to ISPC function spawns “gang” of ISPC “program instances”
- All instances run ISPC code concurrently
- Upon return, all instances have completed

ISPC compiler generates SIMD implementation:

- Number of instances in a gang is the SIMD width of the hardware (or a small multiple of SIMD width)
- ISPC compiler generates binary (.o) with SIMD instructions
- C++ code links against object file as usual
sin(x) in ISPC: version 2
“Blocked” assignment of elements to instances

C++ code: main.cpp

```c++
#include "sinx_ispc.h"

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);
```

ISPC code: sinx.ispc

```ispc
export void sinx(
    uniform int N,
    uniform int terms,
    uniform float* x,
    uniform float* result)
{
    // assume N % programCount = 0
    uniform int count = N / programCount;
    int start = programIndex * count;
    for (uniform int i=0; i<count; i++)
    {
        int idx = start + i;
        float value = x[idx];
        float numer = x[idx] * x[idx] * x[idx];
        uniform int denom = 6; // 3!
        uniform int sign = -1;

        for (uniform int j=1; j<=terms; j++)
        {
            value += sign * numer / denom
            numer *= x[idx] * x[idx];
            denom *= (j+3) * (j+4);
            sign *= -1;
        }
        result[idx] = value;
    }
}
```

#include "sinx_ispc.h"
int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);
Blocked assignment of program instances to loop iterations

Elements of output array (results)

```
0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15
```

“Gang” of ISPC program instances

In this illustration: gang contains four instances: programCount = 4
Schedule: interleaved assignment

“Gang” of ISPC program instances

Gang contains four instances: `programCount = 4`

<table>
<thead>
<tr>
<th>time</th>
<th>Instance 0 (programIndex = 0)</th>
<th>Instance 1 (programIndex = 1)</th>
<th>Instance 2 (programIndex = 2)</th>
<th>Instance 3 (programIndex = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>i=1</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>i=2</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>i=3</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

Single “packed load” SSE instruction `_mm_load_ps1` efficiently implements:

```c
float value = x[idx];
```

for all program instances, since the four values are contiguous in memory.
Schedule: blocked assignment

“Gang” of ISPC program instances

Gang contains four instances: programCount = 4

<table>
<thead>
<tr>
<th>Instance 0 (programIndex = 0)</th>
<th>Instance 1 (programIndex = 1)</th>
<th>Instance 2 (programIndex = 2)</th>
<th>Instance 3 (programIndex = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

float value = x[idx];
now touches four non-contiguous values in memory.
Need “gather” instruction to implement
(gather is a more complex, and more costly SIMD instruction: only available since 2013 as part of AVX2)

uniform int count = N / programCount;
int start = programIndex * count;
for (uniform int i=0; i<count; i++) {
 int idx = start + i;
 float value = x[idx];
...
Raising level of abstraction with foreach

Compute \(\sin(x) \) using Taylor expansion: \(\sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ... \)

C++ code: main.cpp

```cpp
#include "sinx_ispc.h"

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);
```

ISPC code: sinx.ispc

```ispc
export void sinx(
    uniform int N,
    uniform int terms,
    uniform float* x,
    uniform float* result)
{
    foreach (i = 0 ... N)
    {
        float value = x[i];
        float numer = x[i] * x[i] * x[i];
        uniform int denom = 6;  // 3!
        uniform int sign = -1;

        for (uniform int j=1; j<=terms; j++)
        {
            value += sign * numer / denom
            numer *= x[i] * x[i];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }
        result[i] = value;
    }
}
```

foreach: key ISPC language construct

- **foreach declares parallel loop iterations**
 - Programmer says: these are the iterations the instances in a gang cooperatively must perform

- **ISPC implementation assigns iterations to program instances in gang**
 - Current ISPC implementation will perform a static interleaved assignment (but the abstraction permits a different assignment)
ISPC: abstraction vs. implementation

- Single program, multiple data (SPMD) programming model
 - Programmer “thinks”: running a gang is spawning programCount logical instruction streams (each with a different value of programIndex)
 - This is the programming abstraction
 - Program is written in terms of this abstraction

- Single instruction, multiple data (SIMD) implementation
 - ISPC compiler emits vector instructions (SSE4 or AVX) that carry out the logic performed by a ISPC gang
 - ISPC compiler handles mapping of conditional control flow to vector instructions (by masking vector lanes, etc.)

- Semantics of ISPC can be tricky
 - SPMD abstraction + uniform values (allows implementation details to peak through abstraction a bit)
ISPC discussion: sum “reduction”

Compute the sum of all array elements in parallel

```
export uniform float sumall1(
    uniform int N,
    uniform float* x)
{
    uniform float sum = 0.0f;
    foreach (i = 0 ... N)
    {
        sum += x[i];
    }
    return sum;
}
```

```
export uniform float sumall2(
    uniform int N,
    uniform float* x)
{
    uniform float sum;
    foreach (i = 0 ... N)
    {
        partial += x[i];
    }
    // from ISPC math library
    sum = reduce_add(partial);
    return sum;
}
```

Correct ISPC solution

sum is of type uniform float (one copy of variable for all program instances)

x[i] is not a uniform expression (different value for each program instance)

Result: compile-time type error
ISPC discussion: sum “reduction”

Compute the sum of all array elements in parallel

Each instance accumulates a private partial sum (no communication)

Partial sums are added together using the reduce_add() cross-instance communication primitive. The result is the same total sum for all program instances (reduce_add() returns a uniform float)

The ISPC code at right will execute in a manner similar to handwritten C + AVX intrinsics implementation below.*

```c
float sumall2(int N, float* x) {
    float tmp[8]; // assume 16-byte alignment
    __mm256 partial = __mm256_broadcast_ss(0.0f);
    for (int i=0; i<N; i+=8)
        partial = __mm256_add_ps(partial, __mm256_load_ps(&x[i]));
    __mm256_store_ps(tmp, partial);
    float sum = 0.f;
    for (int i=0; i<8; i++)
        sum += tmp[i];
    return sum;
}
```

* Self-test: If you understand why this implementation complies with the semantics of the ISPC gang abstraction, then you’ve got a good command of ISPC
ISPC tasks

- The ISPC gang abstraction is implemented by SIMD instructions on one core.

- So... all the code I’ve shown you in the previous slides would have executed on only one of the four cores of the GHC machines.

- ISPC contains another abstraction: a “task” that is used to achieve multi-core execution. I’ll let you read up about that.
The second half of today’s lecture

- Three parallel programming models
 - That differ in communication abstractions presented to the programmer
 - Programming models influence how programmers think when writing programs

- Three machine architectures
 - Abstraction presented by the hardware to low-level software
 - Typically reflect hardware implementation’s capabilities

- We’ll focus on differences in communication and cooperation
System layers: interface, implementation, interface, ...

Parallel Applications

Abstractions for describing concurrent, parallel, or independent computation

Abstractions for describing communication

“Programming model” (provides way of thinking about the structure of programs)

Language or library primitives/mekanisms

Compiler and/or parallel runtime

OS system call API

Operating system

Hardware Architecture (HW/SW boundary)

Micro-architecture (hardware implementation)

Blue italic text: abstraction/concept
Red italic text: system interface
Black text: system implementation
Example: expressing parallelism with pthreads

Parallel Application

Abstraction for concurrent computation: a thread

pthread_create()

pthread library implementation

System call API
OS support: kernel thread management

x86-64
modern multi-core CPU

Blue italic text: abstraction/concept
Red italic text: system interface
Black text: system implementation
Example: expressing parallelism with ISPC

Parallel Applications

Abstractions for describing parallel computation:
1. For specifying simultaneous execution (true parallelism)
2. For specifying independent work (potentially parallel)

ISPC language (call ISPC function, foreach construct)

ISPC compiler

System call API
OS support

x86-64 (including AVX vector instructions)

single-core of CPU

Note: This diagram is specific to the ISPC gang abstraction. ISPC also has the “task” language primitive for multi-core execution. I don’t describe it here but it would be interesting to think about how that diagram would look.
Three models of communication (abstractions)

1. Shared address space
2. Message passing
3. Data parallel
Shared address space model of communication
Shared address space model (abstraction)

- Threads communicate by reading/writing to shared variables
- Shared variables are like a big bulletin board
 - Any thread can read or write to shared variables

Thread 1:
```c
int x = 0;
spawn_thread(foo, &x);
x = 1;
```

Thread 2:
```c
void foo(int* x) {
    while (x == 0) {}
    print x;
}
```

(Pseudocode provided in a fake C-like language for brevity.)

(Communication operations shown in red)
Shared address space model (abstraction)

Synchronization primitives are also shared variables: e.g., locks

Thread 1:

```c
int x = 0;
Lock my_lock;

spawn_thread(foo, &x, &my_lock);

mylock.lock();
x++;
mylock.unlock();
```

Thread 2:

```c
void foo(int* x, lock* my_lock)
{
    my_lock->lock();
x++;
    my_lock->unlock();

    print x;
}
```

(Pseudocode provided in a fake C-like language for brevity.)
Shared address space model (abstraction)

- Threads communicate by:
 - Reading/writing to shared variables
 - Inter-thread communication is implicit in memory operations
 - Thread 1 stores to X
 - Later, thread 2 reads X (and observes update of value by thread 1)
 - Manipulating synchronization primitives
 - e.g., ensuring mutual exclusion via use of locks

- This is a natural extension of sequential programming
 - In fact, all our discussions in class have assumed a shared address space so far!

- Helpful analogy: shared variables are like a big bulletin board
 - Any thread can read or write to shared variables
HW implementation of a shared address space

Key idea: any processor can directly reference any memory location

“Dance-hall” organization

Interconnect examples

Symmetric (shared-memory) multi-processor (SMP):
- Uniform memory access time: cost of accessing an uncached * memory address is the same for all processors

* caching introduces non-uniform access times, but we’ll talk about that later
Shared address space HW architectures
Commodity x86 examples

Intel Core i7 (quad core)
(interconnect is a ring)

AMD Phenom II (six core)
SUN Niagara 2 (UltraSPARC T2)

Note area of crossbar (CCX): about same area as area of one core

Eight cores
Non-uniform memory access (NUMA)

All processors can access any memory location, but... the cost of memory access (latency and/or bandwidth) is different for different processors

Example: latency to access address x is higher from cores 5-8 than cores 1-4

Example: modern dual-socket configuration

AMD Hyper-transport / Intel QuickPath (QPI)
Non-uniform memory access (NUMA)

All processors can access any memory location, but... the cost of memory access (latency and/or bandwidth) is different for different processors

- Problem with preserving uniform access time in a system: scalability
 - GOOD: costs are uniform, BAD: they are uniformly bad (memory is uniformly far away)

- NUMA designs are more scalable
 - Low latency access to local memory
 - Provide high bandwidth to local memory

- Cost is increased programmer effort for performance tuning
 - Finding, exploiting locality is important to performance (want most memory accesses to be to local memories)
SGI Altix UV 1000

- 256 blades, 2 CPUs per blade, 8 cores per CPU = 4,096 cores
- Single shared address space
- Interconnect: fat tree

Image credit: Pittsburgh Supercomputing Center
Summary: shared address space model

- Communication abstraction
 - Threads read/write shared variables
 - Threads manipulate synchronization primitives: locks, semaphors, etc.
 - Logical extension of uniprocessor programming *

- Requires hardware support to implementation efficiently
 - Any processor can load and store from any address (its shared address space!)
 - Even with NUMA, costly to scale
 (one of the reasons why supercomputers are expensive)

* But NUMA implementation requires reasoning about locality for performance
Message passing model of communication
Message passing model (abstraction)

- Threads operate within their own private address spaces
- Threads communicate by sending/receiving messages
 - **send**: specifies recipient, buffer to be transmitted, and optional message identifier ("tag")
 - **receive**: sender, specifies buffer to store data, and optional message identifier
 - Sending messages is **the only way** to exchange data between threads 1 and 2

Illustration adopted from Culler, Singh, Gupta
Message passing (implementation)

- Popular software library: MPI (message passing interface)
- Hardware need not implement system-wide loads and stores to execute message passing programs (need only be able to communicate messages)
 - Can connect commodity systems together to form large parallel machine (message passing is a programming model for clusters)

Image credit: IBM
15-418/618 “latedays” cluster

- 15 node cluster *
 - 1 head node, 14 worker nodes accessible via a batch job queue

- Each node contains:
 - Two, six-core Xeon e5-2620 v3 processors (844 GFLOPS peak)
 - 2.4 GHz, 15MB L3 cache, hyper-threading, AVX2 ("8-wide") instruction support
 - 16 GB RAM (60 GB/sec bandwidth)
 - NVIDIA K40 GPU (4.2 TFLOPS peak)
 - One Xeon Phi 5110p co-processor board (2 TFLOPS peak)
 - 60 “simple” 1 GHz x86 cores
 - 4-threads per core, AVX512 ("16-wide") instruction support
 - 8 GB RAM (320 GB/sec bandwidth)

- Total peak single precision flops: 105 TFLOPS
 - Interesting stat: would have been #2 machine in the world in 2005

- Machines connected via Ethernet. Ick. :-(

* There are also three other nodes that have Titan X GPUs instead of Phis and K40s (so add another 20 TFLOPS if you are counting)
Caveat: the correspondence between programming models and machine types is fuzzy

- Common to implement message passing abstractions on machines that implement a shared address space in hardware
 - “Sending message” = copying memory from message library buffers
 - “Receiving message” = copy data from message library buffers

- Can implement shared address space abstraction on machines that do not support it in HW (via less efficient SW solutions)
 - Mark all pages with shared variables as invalid
 - Page-fault handler issues appropriate network requests

- Keep clear in your mind: what is the programming model (abstractions used to specify program)? And what is the HW implementation?
The data-parallel model
Recall: programming models serve to impose structure on programs

- **Shared address space: very little structure to communication**
 - All threads can read and write to all shared variables
 - Pitfall: due to implementation: not all reads and writes have the same cost (and that cost is not apparent in program text)

- **Message passing: highly structured communication**
 - All communication occurs in the form of messages (can read program and see where the communication is)

- **Data-parallel: very rigid computation structure**
 - Programs perform same function on different data elements in a collection
Data-parallel model

- Historically: same operation on each element of an array
 - Matched capabilities SIMD supercomputers of 80's
 - Connection Machine (CM-1, CM-2): thousands of processors, one instruction decode unit
 - Cray supercomputers: vector processors
 - add(A, B, n) ← this was one instruction on vectors A, B of length n

- Matlab is another good example: C = A + B
 (A, B, and C are vectors of same length)

- Today: often takes form of SPMD programming
 - map(function, collection)
 - Where function is applied to each element of collection independently
 - function may be a complicated sequence of logic (e.g., a loop body)
 - Synchronization is implicit at the end of the map (map returns when function has been applied to all elements of collection)
Data parallelism in ISPC

Think of loop body as function (from the previous slide)

foreach construct is a map

Given this program, it is reasonable to think of the program as mapping the loop body onto each element of the arrays X and Y.

But if we want to be more precise: the collection is not a first-class ISPC concept. It is implicitly defined by how the program has implemented array indexing logic.

(There is no operation in ISPC with the semantic: “map this code over all elements of this array”)
Data parallelism in ISPC

// main C++ code:
const int N = 1024;
float* x = new float[N/2];
float* y = new float[N];

// initialize N/2 elements of x here
absolute_repeat(N/2, x, y);

// ISPC code:
export void absolute_repeat(
 uniform int N,
 uniform float* x,
 uniform float* y)
{
 foreach (i = 0 ... N)
 {
 if (x[i] < 0)
 y[2*i] = -x[i];
 else
 y[2*i] = x[i];
 y[2*i+1] = y[2*i];
 }
}

Think of loop body as function
foreach construct is a map
Collection is implicitly defined by array indexing logic

This is also a valid ISPC program!

It takes the absolute value of elements of x, then repeats it twice in the output array y

(Less obvious how to think of this code as mapping the loop body onto existing collections.)
Data parallelism in ISPC

// main C++ code:
const int N = 1024;
float* x = new float[N];
float* y = new float[N];

// initialize N elements of x
shift_negative(N, x, y);

// ISPC code:
export void shift_negative(
 uniform int N,
 uniform float* x,
 uniform float* y)
{
 foreach (i = 0 ... N)
 {
 if (i >= 1 && x[i] < 0)
 y[i-1] = x[i];
 else
 y[i] = x[i];
 }
}

Think of loop body as function
foreach construct is a map
Collection is implicitly defined by array indexing logic

The output of this program is undefined!

Possible for multiple iterations of the loop body to write to same memory location

Data-parallel model (foreach) provides no specification of order in which iterations occur

Model provides no primitives for fine-grained mutual exclusion/synchronization). It is not intended to help programmers write programs with that structure
Data parallelism: a more “pure” approach

Note: this is not ISPC syntax (more of Kayvon’s made up syntax)

Main program:

```cpp
const int N = 1024;

stream<float> x(N); // sequence (a “stream”)
stream<float> y(N); // sequence (a “stream”)

// initialize N elements of x here...

// map function absolute_value onto streams
absolute_value(x, y);
```

Data-parallelism expressed in this functional form is sometimes referred to as the stream programming model

Streams: sequences of elements. Elements in a stream can be processed independently

Kernels: side-effect-free functions. Operate element-wise on collections

Think of the inputs, outputs, and temporaries for each kernel invocation as forming a private per-invocation address space

“Kernel” definition:

```cpp
void absolute_value(float x, float y) {
    if (x < 0)
        y = -x;
    else
        y = x;
}
```
Stream programming benefits

Global-scale program dependencies are known by compiler (enables compiler to perform aggressive optimizations that require global program analysis):

Independent processing on elements, kernel functions are side-effect free:
- Optimization: parallelize kernel execution
- Application cannot write a program that is non-deterministic under parallel execution

Inputs/outputs of each invocation known in advance: prefetching can be employed to hide latency.

Producer-consumer dependencies are known in advance: Implementation can be structured so outputs of first kernel are immediately processed by second kernel. (The values are stored in on-chip buffers/caches and never written to memory! Saves bandwidth!)

const int N = 1024;
stream<float> input(N);
stream<float> output(N);
stream<float> tmp(N);

foo(input, tmp);
bar(tmp, output);

parallel_for(int i=0; i<N; i++)
{
 output[i] = bar(foo(input[x]));
}
Stream programming drawbacks

Need library of operators to describe complex data flows (see use of `repeat` operator at left to obtain same behavior as indexing code below)

My experience: cross fingers and hope compiler is intelligent enough to generate code below from program at left.

```cpp
const int N = 1024;
stream<float> input(N/2);
stream<float> tmp(N);
stream<float> output(N);

// double length of stream by replicating
// all elements 2x
stream_repeat(2, input, tmp);

absolute_value(tmp, output);
```

Kayvon’s experience:

This is the achilles heel of all “proper” data-parallel/stream programming systems.

“If I just had one more operator”...

// ISPC code:
export void absolute_value(
 uniform int N,
 uniform float* x,
 uniform float* y)
{
 foreach (i = 0 ... N)
 {
 float result;
 if (x[i] < 0)
 result = -x[i];
 else
 result = x[i];
 y[2*i+1] = y[2*i] = result;
 }
}
Gather/scatter: two key data-parallel communication primitives

Map absolute_value onto stream produced by gather:

```c
const int N = 1024;
stream<float> input(N);
stream<int> indices;
stream<float> tmp_input(N);
stream<float> output(N);

stream_gather(input, indices, tmp_input);
absolute_value(tmp_input, output);
```

Map absolute_value onto stream, scatter results:

```c
const int N = 1024;
stream<float> input(N);
stream<int> indices;
stream<float> tmp_output(N);
stream<float> output(N);

absolute_value(input, tmp_output);
stream_scatter(tmp_output, indices, output);
```

ISPC equivalent:

```cpp
export void absolute_value(
    uniform float N,
    uniform float* input,
    uniform float* output,
    uniform int* indices)
{
    foreach (i = 0 ... n)
    {
        float tmp = input[indices[i]];
        if (tmp < 0)
            output[i] = -tmp;
        else
            output[i] = tmp;
    }
}
```

ISPC equivalent:

```cpp
export void absolute_value(
    uniform float N,
    uniform float* input,
    uniform float* output,
    uniform int* indices)
{
    foreach (i = 0 ... n)
    {
        if (input[i] < 0)
            output[indices[i]] = -input[i];
        else
            output[indices[i]] = input[i];
    }
}
```
Gather instruction

```
gather(R1, R0, mem_base);   "Gather from buffer mem_base into R1 according to indices specified by R0."
```

Array in memory with (base address = mem_base)

```
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
```

```
Index vector: R0
```

```
  3  12  4  9  9  15  13  0
```

```
Result vector: R1
```

Gather supported with AVX2 in 2013
But AVX2 does not support SIMD scatter (must implement as scalar loop)
Scatter instruction exists in AVX512

Hardware supported gather/scatter does exist on GPUs.
(still an expensive operation compared to load/store of contiguous vector)
Summary: data-parallel model

- Data-parallelism is about imposing rigid program structure to facilitate simple programming and advanced optimizations.

- Basic structure: map a function onto a large collection of data.
 - Functional: side-effect free execution.
 - No communication among distinct function invocations (allow invocations to be scheduled in any order, including in parallel).

- In practice that's how many simple programs work.

- But... many modern performance-oriented data-parallel languages do not strictly enforce this structure.
 - ISPC, OpenCL, CUDA, etc.
 - They choose flexibility/familiarity of imperative C-style syntax over the safety of a more functional form: it's been their key to their adoption.
 - Opinion: sure, functional thinking is great, but programming systems sure should impose structure to facilitate achieving high-performance implementations, not hinder them.
Summary
Summary

- Programming models provide a way to think about the organization of parallel programs. They provide abstractions that permit multiple valid implementations.
Summary

Restrictions imposed by these abstractions are designed to:

1. Reflect realities of parallelization and communication costs to programmer (help a programmer write efficient programs)
 - Shared address space machines: hardware supports any processor accessing any address
 - Messaging passing machines: hardware may accelerate message send/receive/buffering
 - Desirable to keep “abstraction distance” low so programs have predictable performance, but want abstractions to be high enough for code flexibility/portability

2. Provide useful information to implementors of optimizing compilers/runtimes/hardware to help them efficiently implement programs using these abstractions
We discussed three parallel programming models

- **Shared address space**
 - Communication is unstructured, implicit in loads and stores
 - Natural way of programming, but can shoot yourself in the foot easily
 - Program might be correct, but not perform well

- **Message passing**
 - Structure all communication as messages
 - Often harder to get first correct program than shared address space
 - Structure often helpful in getting to first correct, scalable program

- **Data parallel**
 - Structure computation as a big “map” over a collection
 - Assumes a shared address space from which to load inputs/store results, but model severely limits communication between iterations of the map (goal: preserve independent processing of iterations)
 - Modern embodiments encourage, but don’t enforce, this structure
Modern practice: mixed programming models

- Use shared address space programming within a multi-core node of a cluster, use message passing between nodes
 - Very, very common in practice
 - Use convenience of shared address space where it can be implemented efficiently (within a node), require explicit communication elsewhere

- Data-parallel-ish programming models support shared-memory style synchronization primitives in kernels
 - Permit limited forms of inter-iteration communication (e.g., CUDA, OpenCL)

- In a future lecture... CUDA/OpenCL use data-parallel model to scale to many cores, but adopt shared-address space model allowing threads running on the same core to communicate.
Los Alamos National Lab: Roadrunner supercomputer

Fastest computer in the world in 2008 (no longer true)
3,240 node cluster. Heterogeneous nodes.

Most modern GPU accelerated clusters have similar characteristics (e.g., see world’s current #3, ORNL’s Titan)
Questions to consider

- Programming models enforce different forms of structure on programs. What are the benefits of data-parallel structure?

- With respect to the goals of efficiency/performance... what do you think are problems of adopting a very high level of abstraction in a programming system?
 - What about potential benefits?

- Choose a popular parallel programming system (for example MapReduce, Spark, or Cilk) and try and describe its programming model (how are communication and execution expressed?)