
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2017

Lecture 12:

A Basic Snooping-Based
Multi-Processor Implementation

 CMU 15-418/618, Spring 2017

Kiiara
“Gold”

(Low Kii Savage)

Tunes

“And if you study, study, you’ll know everything you need to know.
If exercises make it look dire, just let a TA know.
We can’t give you help if you never really show.

Trade the party for the library and your knowledge will grow.
Your knowledge will grow.”

-Kiara Saulters, early draft of lyrics.

 CMU 15-418/618, Spring 2017

Today: implementing cache coherence
▪ Wait... haven’t we talked about this before?

▪ In the previous lectures we talked about cache coherence protocols
- But our discussion was very abstract
- We described what messages/transactions needed to be sent
- We assumed messages/transactions were atomic

Today we will talk about efficiently
implementing an invalidation-based protocol

Today’s point: in a real machine... efficiently
ensuring coherence is complex

 CMU 15-418/618, Spring 2017

The concepts in today’s lecture span much
more than just hardware implementation

▪ The challenges and techniques we describe today (trade-offs
between simplicity and performance, challenges of correctness in
a parallel system) apply equally well to writing parallel programs
- Assignment 4 will be a good example of this

 CMU 15-418/618, Spring 2017

E
(Exclusive)

M
(Modified)

PrRd / --
PrWr / --

PrWr / BusUgr BusRd / flush

I
(Invalid)

PrWr / BusRdX

PrWr / --

PrRd / --
BusRdX / --

BusRdX / flush

BusRd / --

S
(Shared)

PrRd / --

PrRd / BusRd
(no other cache
asserts shared)

PrRd / BusRd

BusRd / --

BusRdX / --
(another cache
asserts shared)

Review: MESI state transition diagram

 CMU 15-418/618, Spring 2017

The goals of our coherence implementation

1. Be correct
- Implement cache coherence

2. Achieve high performance

3. Minimize “cost” (e.g., minimize amount of extra
hardware needed to implement coherence)

As you will see...
Techniques that yield high performance tend to make ensuring correctness tricky.

 CMU 15-418/618, Spring 2017

What you should know

▪ Concepts of deadlock, livelock, and starvation

▪ Have a basic understanding of how a bus works
- But keep in mind most modern interconnects are NOT buses!

(we’ll have a whole lecture on interconnects soon)

▪ Understand why maintaining coherence is challenging, even when operating
under simple machine design parameters

- How do performance optimizations make correctness challenging?
(e.g., how can deadlock, livelock, and starvation occur in coherence
implementations, and how are these problems avoided?)

- Your mental model of hardware should be: there are many components
operating in parallel (even if abstractions don’t indicate this is the case)

 CMU 15-418/618, Spring 2017

Deadlock
Livelock

Starvation

(Deadlock and livelock concern program correctness. Starvation is really an issue of fairness.)

Terminology

 CMU 15-418/618, Spring 2017

Deadlock
Deadlock is a state where a system has
outstanding operations to complete, but
no operation can make progress.

Can arise when each operation has
acquired a shared resource that another
operation needs.

In a deadlock situations, there is no way
for any thread (or, in this illustration, a
car) to make progress unless some thread
relinquishes a resource (“backs up”)

 CMU 15-418/618, Spring 2017

Yinzer deadlock

Non-technical side note for car-owning students:
Deadlock happens in Pittsburgh all the %$*** time

(However, deadlock can be amusing when a bus
driver decides to let another driver know he has
caused deadlock... “go take 418 you fool!”)

 CMU 15-418/618, Spring 2017

More illustrations of deadlock

Credit: David Maitland, National Geographic

Why are these examples of deadlock?

 CMU 15-418/618, Spring 2017

Deadlock in computer systems

B

A

A produces work for B’s work queue

B produces work for A’s work queue

Queues are finite and workers wait if
no output space is available

const	int	numEl	=	1024;	
float	msgBuf1[numEl];	
float	msgBuf2[numEl];	

int	threadId	getThreadId();	

...	do	work	...	

MsgSend(msgBuf1,	numEl	*	sizeof(int),	threadId+1,	...	
MsgRecv(msgBuf2,	numEl	*	sizeof(int),	threadId-1,	...

Every process sends a message (blocking send) to
the processor with the next higher id

Then receives message from processor with next
lower id.

Example 1: Example 2:

Work queue (full)

Work queue (full)

 CMU 15-418/618, Spring 2017

Required conditions for deadlock
1. Mutual exclusion: only one processor can hold a given resource at once

2. Hold and wait: processor must hold the resource while waiting for other
resources needed to complete an operation

3. No preemption: processors don’t give up resources until operation they
wish to perform is complete

4. Circular wait: waiting processors have mutual dependencies (a cycle exists
in the resource dependency graph)

B

A

Work queue (full)

Work queue (full)

 CMU 15-418/618, Spring 2017

Livelock

 CMU 15-418/618, Spring 2017

Livelock

 CMU 15-418/618, Spring 2017

Livelock

 CMU 15-418/618, Spring 2017

Livelock
Livelock is a state where a system is
executing many operations, but no
thread is making meaningful progress.

Can you think of a good daily life
example of livelock?

Computer system examples:

Operations continually abort and retry

 CMU 15-418/618, Spring 2017

Starvation
State where a system is making overall
progress, but some processes make no
progress.
(green cars make progress, but yellow cars are stopped)

Starvation is usually not a permanent
state
(as soon as green cars pass, yellow cars can go)

In this example: assume traffic moving left/right (yellow cars) must
yield to traffic moving up/down (green cars)

 CMU 15-418/618, Spring 2017

Part 1:
A basic implementation of snooping

(assuming an atomic bus)

 CMU 15-418/618, Spring 2017

Consider a basic system design
- One outstanding memory request per processor
- Single level, write-back cache per processor
- Cache can stall processor as it is carrying out coherence operations
- System interconnect is an atomic shared bus (one cache communicates at a time)

Cache

Processor

Interconnect (shared bus)

Data

Cache

Processor

Tags Data

Memory

State Tags State

 CMU 15-418/618, Spring 2017

Transaction on an atomic bus
1. Client is granted bus access (result of arbitration)
2. Client places command on bus (may also place data on bus)

3. Response to command by another bus client placed on bus
4. Next client obtains bus access (arbitration)

 CMU 15-418/618, Spring 2017

Cache miss logic on a uniprocessor
1. Determine cache set (using appropriate bits of address)
2. Check cache tags (to determine if line is in cache)

3. Assert request for access to bus
4. Wait for bus grant (as determined by bus arbitrator)
5. Send address + command on bus
6. Wait for command to be accepted
7. Receive data on bus

[Assume no matching tags, must read data from memory]

What does atomic bus mean in a multi-
processor scenario?

For BusRd, BusRdX: no other bus
transactions allowed between issuing
address and receiving data

Flush: address and data sent
simultaneously, received by memory
before any other transaction allowed

Address

Data

 CMU 15-418/618, Spring 2017

Multi-processor cache controller behavior
Challenge: both requests from processor and bus require tag lookup

CacheTags DataState

to processor

to bus

If bus receives priority:
During bus transaction, processor is
locked out from its own cache.

If processor receives priority:
During processor cache accesses, cache
cannot respond with its snoop result
(so it delays other processors even if no
sharing of any form is present)

“Snoop” controller *

“processor-side” controller

* Snoop controller has its mind on the bus and the bus on its mind

This is another example of contention!

 CMU 15-418/618, Spring 2017

Alleviate contention: allow simultaneous
access by processor-side and snoop controllers

Cache

Tags

Data

State

to processor

to bus

Option 1: cache duplicate tags

Option 2: multi-ported tag memory

Note: tags must stay in sync for
correctness, so tag update by one
controller will still need to block the other
controller (but modifying tags is
infrequent compared to checking them)

Keep in mind: in either case cost of the
additional performance is additional
hardware resources.

“Snoop” controller

“processor-side” controller

Tags State

 CMU 15-418/618, Spring 2017

Reporting snoop results

▪ Assume a cache read miss (BusRd)

▪ Collective response of caches must appear on bus
- Is line dirty? If so, memory should not respond

- Is line shared? If so, cache should load into S state, not E

Memory needs to
know what to do

Loading cache needs
to know what to do

How are snoop results communicated?
When are snoop results communicated?

 CMU 15-418/618, Spring 2017

Reporting snoop results: how

Address
Data

Shared
Dirty
Snoop-pending

‘OR’ of result from all processors
‘OR’ of result from all processors

Bus

‘OR’ of result from all processors
(0 value indicates all processors have responded)

These three lines are additional
bus interconnect hardware!

 CMU 15-418/618, Spring 2017

Reporting snoop results: when

▪ Memory controller could immediately start accessing DRAM, but not
respond (squelch response) if a snoop result from another cache
indicates it has copy of most recent data
- Cache should provide data, not memory

▪ Memory could assume one of the caches will service request until
snoop results are valid (if snoop indicates no cache has data, then
memory must respond)

 CMU 15-418/618, Spring 2017

Handling cache line write backs
▪ Write backs involve two bus transactions

1. Incoming line (line requested by processor)
2. Outgoing line (evicted dirty line in cache that must be flushed)

▪ Ideally would like the processor to continue as soon as
possible (it shouldn’t have to wait for the flush to complete)

▪ Solution: write-back buffer
- Stick line to be evicted (flushed) in a write-back buffer
- Immediately load requested line (allows processor to continue)
- Flush contents of write-back buffer at a later time

 CMU 15-418/618, Spring 2017

Cache with write-back buffer

What if a request for the address of
the data in the write-back buffer
appears on the bus?

Snoop controller must check the
write-back buffer addresses in
addition to cache tags.

If there is a write-back buffer
match:

1. Respond with data from write-
back buffer rather than cache

2. Cancel outstanding bus access
request (for the write back)

these hardware components handle
processor-related requests

these hardware components handle
snooping related tasks

Figure credit: Culler, Singh, and Gupta

 CMU 15-418/618, Spring 2017

In practice state transitions on not atomic
▪ Coherence protocol state transition diagrams (like the one below) assumed that

transitions between states were atomic

▪ We’ve assumed the bus transaction itself is atomic, but all the operations the system
performs as a result of a memory operation are not
- e.g., look up tags, arbitrate for bus, wait for actions by other controllers, …

▪ Implementations must be careful to handle race conditions appropriately

 CMU 15-418/618, Spring 2017

An example race condition
Processors P1 and P2 write to valid (and shared) cache line A simultaneously
(both need to issue BusUpg to move line from S state to M state)

P1 “wins” bus access (as determined by arbiter), P1 sends BusUpg

P2 is waiting for bus access (to send its own BusUpg), can’t proceed because P1 has bus

P2 receives BusUpg, must invalidate line A (as per MESI protocol)

P2 must also change its pending BusUpg request to a BusRdX

Cache must be able to handle
requests while waiting to acquire
bus AND be able to modify its own
outstanding requests

 CMU 15-418/618, Spring 2017

Fetch deadlock
P1 has a modified copy of cache line B
P1 is waiting for the bus so it can issue BusRdX on cache line A
BusRd for B appears on bus while P1 is waiting

To avoid deadlock, P1 must be able to service incoming
transactions while waiting to issue requests

 CMU 15-418/618, Spring 2017

Livelock
Two processors writing to cache line B
P1 acquires bus, issues BusRdX
P2 invalidates
Before P1 performs cache line update, P2 acquires bus, issues BusRdX
P1 invalidates
and so on...

To avoid livelock, a write that obtains exclusive ownership must be
allowed to complete before exclusive ownership is relinquished.

 CMU 15-418/618, Spring 2017

Reminder: memory coherence
▪ There is some serial order of all operations to the

same address that is consistent with the results
observed during program execution, and:

1. Memory operations issued by any one processor occur in
the order issued by the processor

2. The value returned by a read is the value written by the
last write to the location… as given by the serial order

Chronology of
operations on

address X

P0 write: 5

P1 read (5)

P2 read (5)

P0 read (5)

P1 write: 25

P0 read (25)

Other ways of thinking about the definition:

Write propagation: A read by processor P1 to address X that follows a write by processor P2
to X returns the written value... if the read and write are “sufficiently separated” in real-
world time

Write serialization: writes to the same address are serialized: two writes to address X by
any two processors are observed in the same order by all processors.

 CMU 15-418/618, Spring 2017

Self check: when does a write “commit?”
▪ Consider a sequence of operations a machine performs when

carrying out a write (consider write miss scenario)

1. Core issues STORE X ←R0 instruction
2. Look up line in cache (assume line not in cache or not in M state)
3. Arbitrate for bus
4. Place BusRdX on bus / other processors snoop request
5. Memory responds with data for cache line containing X
6. Contents of R0 written to appropriate bytes of cache line

▪ When does the write “commit”?
- In other words, at what point are we guaranteed that the write

will be “visible” to other processors?

 CMU 15-418/618, Spring 2017

Self check: when does a write “commit?”
▪ A write commits when a read-exclusive transaction appears on bus

and is acknowledged by all other caches
- At this point, the write is “committed”
- All future reads will reflect the value of this write (even if data from P has not yet been

written to P’s dirty cache line, or to memory)
- Key idea: order of transactions on the bus defines the global order of writes in the

parallel program (write serialization requirement of coherence)

▪ Commit != complete: a write completes when the updated value
has been put in the cache line

▪ Why does a write-back buffer not effect time of commit?

 CMU 15-418/618, Spring 2017

Starvation
▪ Multiple processors competing for bus access

- Must be careful to avoid (or minimize likelihood of) starvation
- E.g., what if processor with “lowest id” wins.

▪ Example policies that achieve greater fairness:
- FIFO arbitration

- Priority-based heuristics (frequent bus users have priority drop)

 CMU 15-418/618, Spring 2017

Design issues
▪ Design of cache controller and tags

(to support access from processor and bus)

▪ How and when to present snoop results on bus

▪ Dealing with write backs

▪ Dealing with non-atomic state transitions

▪ Avoiding deadlock, livelock, starvation

These issues arose even though we only implemented a few optimizations on a
very basic invalidation-based, write-back system!

(atomic bus, one outstanding memory request per processor, single-level caches)

 CMU 15-418/618, Spring 2017

First-half summary: parallelism and concurrency in
coherence implementation are sources of complexity
▪ Processor, cache, and bus all are hardware resources operating in parallel!

- Often contending for shared resources:
- Processor and bus contend for cache
- Difference caches contend for bus access

▪ “Memory operations” are abstracted by the architecture as atomic (e.g.,
loads, stores) are implemented via multiple transactions involving all of
these hardware components

▪ Performance optimization often entails splitting operations into several,
smaller transactions
- Splitting work into smaller transactions reveals more parallelism (recall pipelining)
- Cost: more hardware needed to exploit additional parallelism
- Cost: care needed to ensure abstractions still hold (the machine is correct)

 CMU 15-418/618, Spring 2017

Part 2:
Building the system around non-atomic

bus transactions

 CMU 15-418/618, Spring 2017

What you should know

▪ What is the major performance issue with atomic bus transactions that
motivates moving to a more complex non-atomic system?

▪ You should know the main components of a split-transaction bus, and how
transactions are split into requests and responses

▪ The role of queues in a parallel system (today is yet another example)

 CMU 15-418/618, Spring 2017

Review: transaction on an atomic bus
1. Client is granted bus access (result of arbitration)
2. Client places command on bus (may also place data on bus)

3. Response to command by another bus client placed on bus
4. Next client obtains bus access (arbitration)

Problem: bus is idle while response is pending
(this decreases effective bus bandwidth)

This is bad, because the interconnect is a limited,
shared resource in a multi-processor system.
(So it is important to use it as efficiently as possible)

 CMU 15-418/618, Spring 2017

Split-transaction bus
Bus transactions are split into two transactions:

1. The request
2. The response

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

Consider this scenario:

Read miss to A by P1

Bus upgrade of B by P2

Possible timeline of events on a
split-transaction bus:

P1 gains access to bus

P1 sends BusRd command
[memory starts fetching data now…]

P2 gains access to bus

P2 sends BusUpg command

Memory gains access to bus

Memory places A on bus

Other transactions can intervene between a
transaction’s request and response.

 CMU 15-418/618, Spring 2017

New issues arise due to split transactions

2. How to handle conflicting requests on bus? Consider:
- P1 has outstanding request for line A
- Before response to P1 occurs, P2 makes request for line A

3. Flow control: how many requests can be outstanding at a time,
and what should be done when buffers fill up?

4. When are snoop results reported? During the request? or during
the response?

1. How to match requests with responses?

 CMU 15-418/618, Spring 2017

A basic design

▪ Up to eight outstanding requests at a time (system wide)

▪ Responses need not occur in the same order as requests
- But request order establishes the total order for the system

▪ Flow control via negative acknowledgements (NACKs)
- When a buffer is full, client can NACK a transaction, causing a retry

 CMU 15-418/618, Spring 2017

Initiating a request
Can think of a split-transaction bus as two separate buses:
a request bus and a response bus.

Request bus:
cmd + address

Response bus:
data

Step 1: Requestor asks for request bus access

Step 2: Bus arbiter grants access, assigns transaction a tag

Step 3: Requestor places command + address on the request bus

Requestor Addr

P0 0xbeef

State

Request Table
(assume a copy of this table is maintained

by each bus client: e.g., cache)

Transaction tag is
just the index into
the request table

128 bits

3 bits
Response tag

 CMU 15-418/618, Spring 2017

Read miss: cycle-by-cycle bus behavior (phase 1)

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant

Request arbitration: cache controllers present request for address to bus
(many caches may be doing so in the same cycle)

Request resolution: address bus arbiter grants access to one of the requestors
Request table entry allocated for request (see previous slide)
Special arbitration lines indicate tag assigned to request

Addr

Bus “winner” places command/address on the bus

Caches perform snoop: look up tags, update cache state, etc.
Memory operation commits here!
(NO BUS TRAFFIC)

Addr
Ack

Caches acknowledge this snoop result is ready
(or signal they could not complete snoop in time here (e.g., raise inhibit wire)

 CMU 15-418/618, Spring 2017

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant Addr Addr

Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus
(Data Arbitration)

(Data)

Tag
check

Data response arbitration: responder presents intent to respond
to request with tag T
(many caches --or memory-- may be doing so in the same cycle)

Original requestor signals readiness to receive response
(or lack thereof: requestor may be busy at this time)

Grant

Data bus arbiter grants one responder bus access

Read miss: cycle-by-cycle bus behavior (phase 2)

 CMU 15-418/618, Spring 2017

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant Addr Addr

Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus
(Data Arbitration)

(Data)

Tag
check

Grant

Read miss: cycle-by-cycle bus behavior (phase 3)

Data DataData Data

Responder places response data on data bus
Caches present snoop result for request with the data
Request table entry is freed
Here: assume 64 byte cache lines → 4 cycles on 128 bit bus

 CMU 15-418/618, Spring 2017

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant Addr Addr

Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus
(Data Arbitration)

(Data)

Tag
check

Grant

Pipelined transactions

Data DataData Data

Addr
req Grant Addr Addr

Ack

Data
req

Tag
check

Grant

Data Data ...

Note: write backs and BusUpg transactions do not have a response component
(write backs acquire access to both request address bus and data bus as part of “request” phase)

= memory transaction 1

= memory transaction 2

 CMU 15-418/618, Spring 2017

Request Bus
(Addr/cmd)

Response Bus
(Data Arbitration)

(Data)

Pipelined transactions
Clocks

= memory transaction 1

= memory transaction 2

...

= memory transaction 3

= memory transaction 4

Note out-of-order completion of
bus transactions

 CMU 15-418/618, Spring 2017

Key issues to resolve
▪ Conflicting requests

- Avoid conflicting requests by disallowing them

- Each cache has a copy of the request table

- Simple policy: caches do not make requests that conflict with requests
in the request table

▪ Flow control:
- Caches/memory have buffers for receiving data off the bus

- If the buffer fills, client NACKs relevant requests or responses
(NACK = negative acknowledgement)

- Triggers a later retry

 CMU 15-418/618, Spring 2017

Situation 1: P1 read miss to X, read transaction
involving X from P2 is outstanding on bus

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

read	XRequestor Addr

P2 X

State

P1 Request Table

Op: BusRd

If outstanding request is a read: there is no conflict. No need to make a new bus request,
just listen for the response to the outstanding one.

, share

 CMU 15-418/618, Spring 2017

Situation 2: P1 read miss to X, write transaction
involving X from P2 is outstanding on bus

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

read	XRequestor Addr

P2 X

State

P1 Request Table

Op: BusRdX

If there is a conflicting outstanding request (as determined by checking the request
table), cache must hold request until conflict clears

 CMU 15-418/618, Spring 2017

Why do we have queues in a parallel system?

A B

Answer: to accommodate variable (unpredictable) rates of production and consumption.
As long as A and B, on average, produce and consume at the same rate, both workers can
run at full rate.

With queue of
size 2: A and B
never stall

A

B

1 2 3 4

1

1

2

2 1

3

1

4

5

1

6

5 6

2 10 0 0 Size of queue
when A completes
a piece of work (or
B begins work)

0

A

B

1 2 3 4

1 2 3 4

5 6

5 6

No queue: notice A stalls waiting for B to accept new input (and B sometimes stalls waiting for A to produce new input).

time

 CMU 15-418/618, Spring 2017

Multi-level cache hierarchies

Figure credit: Culler, Singh, and Gupta

Numbers indicate steps in a cache miss from processor on left. Serviced by cache on right.

 CMU 15-418/618, Spring 2017

Recall the fetch-deadlock problem

Assume one outstanding memory request per processor.

Consider fetch-deadlock problem: cache must be able to service requests while waiting on
response to its own request

Figure credit: Culler, Singh, and Gupta

 CMU 15-418/618, Spring 2017

Deadlock due to full queues

L1 Cache

L2 Cache

to processor

to bus

L1→L2 queue L2→L1 queue

Incoming read request (due to another cache) **

Outgoing read request (initiated by processor)

Both requests generate responses that require
space in the other queue (circular dependency)

** will only occur if L1 is write back

Assume buffers are sized so that the maximum
queue size is one message. (buffer size = 1)

 CMU 15-418/618, Spring 2017

Multi-level cache hierarchies

Assume one outstanding memory request per processor.

Consider fetch deadlock problem: cache must be able to service requests while waiting on
response to its own request (hierarchies increase response delay)

Sizing all buffers to accommodate the maximum number of outstanding requests on bus is
one solution to avoiding deadlock. But a costly one!

Figure credit: Culler, Singh, and Gupta

 CMU 15-418/618, Spring 2017

Avoiding buffer deadlock with separate
request/response queues

L1 Cache

L2 Cache

to processor

to bus

L1→L2
request queue

L2→L1
request queue

System classifies all transactions as requests or
responses

Key insight: responses can be completed without
generating further transactions!

Requests INCREASE queue length
But responses REDUCE queue length

While stalled attempting to send a request, cache
must be able to service responses.

Responses will make progress (they generate no
new work so there’s no circular dependence),
eventually freeing up resources for requests

L1→L2
response queue

L2→L1
response queue

 CMU 15-418/618, Spring 2017

int	x	=	10;						//	assume	this	is	a	write	to	memory	(the	value		
																									//	is	not	stored	in	register)

Putting it all together

Class exercise: describe everything that might occur during the
execution of this statement

 CMU 15-418/618, Spring 2017

int	x	=	10;
1. Virtual address to physical address conversion (TLB lookup)
2. TLB miss
3. TLB update (might involve OS)
4. OS may need to swap in page to get the appropriate page table (load from disk to physical address)
5. Cache lookup (tag check)
6. Determine line not in cache (need to generate BusRdX)
7. Arbitrate for bus
8. Win bus, place address, command on bus
9. All caches perform snoop (e.g., invalidate their local copies of the relevant line)
10. Another cache or memory decides it must respond (let’s assume it’s memory)
11. Memory request sent to memory controller
12. Memory controller is itself a scheduler
13. Memory controller checks active row in DRAM row buffer. (May need to activate new DRAM row. Let’s assume it does.)
14. DRAM reads values into row buffer
15. Memory arbitrates for data bus
16. Memory wins bus
17. Memory puts data on bus
18. Requesting cache grabs data, updates cache line and tags, moves line into exclusive state
19. Processor is notified data exists
20. Instruction proceeds

Class exercise: describe everything that might
occur during the execution of this statement *

* This list is certainly not complete, it’s just what I
 came up with off the top of my head. (This would
 be a great job interview question!)

