
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2017

Lecture 14:

Scaling a Web Site
Scale-out Parallelism, Elasticity, and Caching

 CMU 15-418/618, Spring 2017

Taylor Swift
Shake it Off

(1989)

Tunes

“Not happy with your Exam 1 grade? No worries. Plenty of chances to get better!”

- Taylor Swift

 CMU 15-418/618, Spring 2017

HERE

 CMU 15-418/618, Spring 2017

IS

 CMU 15-418/618, Spring 2017

THE DEAL

 CMU 15-418/618, Spring 2017

The Exam 1 Deal
▪ No exam 1 solutions will be distributed at this time

▪ You have the opportunity to redo up to 2 questions (of your
choosing) from the exam, on your own time.
- You may discuss the problems with your classmates, instructor, and TAs.

- You must write your solutions on your own.

- You will get 50% credit for lost points on regraded questions.

- The revised solutions must be handed in by Friday, April 7th

But... there’s a catch!

 CMU 15-418/618, Spring 2017

The Catch
▪ You must hand in your solution to the course staff at a designated

office hours.

▪ And you are not allowed to hand in unless you are able to
successfully answer a series of questions we ask you

▪ The questions will a subset of the questions on exam 1
(or simple follow up variants)

▪ The staff will post times to sign up for 6-minute time slots
- But not until after Spring Break

 CMU 15-418/618, Spring 2017

Today’s focus: the basics of scaling a web site

▪ I’m going to focus on performance issues
- Parallelism and locality

▪ Many other issues in developing a successful web platform
- Reliability, security, privacy, etc.
- There are other great courses at CMU for these topics

(distributed systems, databases, cloud computing)

 CMU 15-418/618, Spring 2017

A simple web server for static content

while	(1)		
{	

				request	=	wait_for_request();	

				filename	=	parse_request(request);	

				contents	=	read_file(filename);	

				send	contents	as	response	

}

Question: is site performance a question of throughput or latency?
(we’ll revisit this question later)

 CMU 15-418/618, Spring 2017

A simple parallel web server

Worker
Process 1

Parent Process

Worker
Process 2

Worker
Process N...

while	(1)		
{	
				request	=	wait_for_request();	

				filename	=	parse_request(request);	

				contents	=	read_file(filename);	

				send	contents	as	response	
}What factors would you consider in setting

the value of N for a multi-core web server?

▪ Parallelism: use all the server’s cores

▪ Latency hiding: hide long-latency disk read operations (by context switching between worker processes)

▪ Concurrency: many outstanding requests, want to service quick requests while long requests are in progress
(e.g., large file transfer shouldn’t block serving index.html)

▪ Footprint: don’t want too many threads so that aggregate working set of all threads causes thrashing

 CMU 15-418/618, Spring 2017

Example: Apache’s parent process dynamically
manages size of worker pool

Worker
Process 1

Parent Process

Worker
Process 2

Worker
Process 3

Worker
Process 4

Worker
Process 5

Busy servicing
long request

Busy servicing
long request

New request

Desirable to maintain a few idle workers in
pool (avoid process creation in critical path of

servicing requests)

 CMU 15-418/618, Spring 2017

Limit maximum number of workers to avoid
excessive memory footprint (thrashing)

Worker
Process 1

Parent Process

Worker
Process 2

Worker
Process 3

Key parameter of Apache’s “prefork” multi-processing module: MaxRequestWorkers

Worker
Process 4

Worker
Process 5

Busy servicing
long request

Busy servicing
long request

New requestBusy servicing
request

Busy servicing
request

Busy servicing
request

Request queue

 CMU 15-418/618, Spring 2017

Aside: why partition server into processes, not threads?

▪ Protection
- Don’t want a crash in one worker to bring down the whole web server

- Often want to use non-thread safe libraries (e.g., third-party libraries) in
server operation

▪ Parent process can periodically recycle workers
(robustness to memory leaks)

▪ Of course, multi-threaded web server solutions exist as well
(e.g., Apache’s “worker” module)

 CMU 15-418/618, Spring 2017

Dynamic web content

Database
(e.g., mySQL)

PHP/Ruby/Python/Node.js
interpreter

Worker Process

Web Server

Worker Process

PHP/Ruby/Python/Node.js
interpreter

. . .

Requests

“Response” is not a static page on disk, but the result of
application logic running in response to a request.

 CMU 15-418/618, Spring 2017

Consider the amount of logic and the
number database queries required to
generate your Facebook News Feed.

 CMU 15-418/618, Spring 2017

Scripting language performance (poor)

▪ Two popular content management systems (PHP)
- Wordpress ~ 12 requests/sec/core (DB size = 1000 posts)
- MediaWiki ~ 8 requests/sec/core

▪ Recent interest in making making scripted code execute faster
- Facebook’s HipHop: PHP to C source-to-source converter
- Google’s V8 Javascript engine: JIT Javascript to machine code

[Source: Talaria Inc., 2012]

 CMU 15-418/618, Spring 2017

“Scale out” to increase throughput

Database
(e.g., mySQL)

Worker Process

Web Server

Worker Process

. . .

Requests

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

Load Balancer

Use many web servers to meet site’s throughput goals.

Load balancer maintains list of available web
servers and an estimate of load on each.

Distributes requests to pool of web servers.
(Redistribution logic is cheap: one load
balancer typically can service many web
servers)

 CMU 15-418/618, Spring 2017

Load balancing with persistence

Database
(e.g., mySQL)

Worker Process

Web Server

Worker Process

. . .

Requests

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

Load Balancer

All requests associated with a session are directed to the same server (aka. session affinity, “sticky sessions”)

map(sessionId, serverName)

1. SessionId = X

2. SessionId = Y

3. SessionId = X

4. SessionId = X

Session
State

Session
State

Session
State

1
3

4

2

Good:
- Do not have to change web-application

design to implement scale out
Bad:
- Stateful servers can limit load balancing

options. Also, session is lost if server fails

 CMU 15-418/618, Spring 2017

Desirable: avoid persistent state in web server

Database
(e.g., mySQL)

Requests

Load Balancer

Maintain stateless servers, treat sessions as persistent data to be stored in the DB.

1. SessionId = X

2. SessionId = Y

3. SessionId = X

4. SessionId = X

Session State

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

 CMU 15-418/618, Spring 2017

Dealing with database contention

Database
(e.g., mySQL)

Requests

Load Balancer

Option 1: “scale up”: buy better hardware for database server, buy professional-grade DB that scales
(see database systems course by Prof. Pavlo)
Good: no change to software
Bad: High cost, limit to scaling

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

 CMU 15-418/618, Spring 2017

Scaling out a database: replicate

Database
Services (writes)

Requests

Load Balancer

Replicate data and parallelize reads
(most DB accesses are reads)
Cost: extra storage, consistency issues

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

Slave Database
Read only

Slave Database
Read only

Adopt relaxed memory models:
propagate updates “eventually”

 CMU 15-418/618, Spring 2017

Scaling out a database: partition

Users photos
(reads and writes)

Requests

Load Balancer

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

Users A-M profile
(reads and writes)

Users N-Z profile
(reads and writes)

Clickstream data
(writes)

Can tune database for access
characteristics of data stored
(common to use different database
implementations for different
workloads)

 CMU 15-418/618, Spring 2017

Inter-request parallelism

Page
Request

Load Balancer

Amount of user traffic is directly correlated to response latency.

See great post:
http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx

Worker Process
Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

Recommender Service

Notification/
Feed Aggregator

Advertising Service

Parallelize generation of a single page

 CMU 15-418/618, Spring 2017

How many web servers do you need?

 CMU 15-418/618, Spring 2017

Web traffic is bursty
Amazon.com Page Views HuffingtonPost.com Page Views Per Week

HuffingtonPost.com Page Views Per Day

(fewer people read news on weekends)

Holiday shopping season

More examples:
- Facebook gears up for bursts of image

uploads on Halloween and New Year’s Eve
- Twitter topics trend after world events

 CMU 15-418/618, Spring 2017

15-418/618 site traffic
Exam 1

Spring 2017

Spring 2015

Spring 2016

Spring 2016

34,436

24,132

39,594

Interesting 2017 fact: page views per student on
the day of the exam was within 1% of that for 2016)

 CMU 15-418/618, Spring 2017

Problem
▪ Site load is bursty

▪ Provisioning site for the average case load will result in poor
quality of service (or failures) during peak usage
- Peak usage tends to be when users care the most... since by the definition the

site is important at these times

▪ Provisioning site for the peak usage case will result in many
idle servers most of the time
- Not cost efficient (must pay for many servers, power/cooling, datacenter

space, etc.)

 CMU 15-418/618, Spring 2017

Elasticity!
▪ Main idea: site automatically adds or removes web

servers from worker pool based on measured load

▪ Need source of servers available on-demand
- Amazon.com EC2 instances
- Google Cloud Platform
- Microsoft Azure

 CMU 15-418/618, Spring 2017

Example: Amazon’s elastic compute cloud (EC2)

▪ Amazon had an over-provisioning problem
- Need to provision for e-commerce bursts to avoid losing sales
- Unused capacity during large parts of the year

▪ Solution: make machines available for rent to others in need of compute
- For those that don’t want to incur cost of, or have expertise to, manage own

machines at scale
- For those that need elastic compute capability

Amazon.com Page Views

 CMU 15-418/618, Spring 2017

Amazon EC2 US West (Oregon) on-demand pricing

1 Tesla K80

8 Tesla K80s

1 vCPU ~ 1 hyper
thread on a “Haswell”
E5-2666 v3 CPU

 CMU 15-418/618, Spring 2017

Site configuration: normal load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

. . .

Perf. Monitor

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Load: moderate

 CMU 15-418/618, Spring 2017

Event triggers spike in load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

. . .

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Heavily loaded servers: slow response times

Perf. Monitor
Load: high

@taylorswift13: parallel
class @ CMU is the bomb
check it out! #15418.

 CMU 15-418/618, Spring 2017

Heavily loaded servers = slow response times
▪ If requests arrive faster than site can service them, queue lengths will grow
▪ Latency of servicing request is wait time in queue + time to actually process

request
- Assume site has capability to process R requests per second
- Assume queue length is L
- Time in queue = L/R

Worker
Process 1

Worker
Process 2

Worker
Process 3

Worker
Process 4

Worker
Process 5

Busy servicing
long request

Busy servicing
long request

New requestBusy servicing
request

Busy servicing
request

Busy servicing
request

Request queue

▪ How does site throughput change under heavy load?

 CMU 15-418/618, Spring 2017

Site configuration: high load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

. . .

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Site performance monitor detects high load
Instantiates new web server instances
Informs load balancer about presence of new servers

Perf. Monitor
Load: moderate

 CMU 15-418/618, Spring 2017

Site configuration: return to normal load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

. . .

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Site performance monitor detects low load
Released extra server instances (to save operating cost)
Informs load balancer about loss of servers

Perf. Monitor
Load: too low

Note convenience of stateless servers in
elastic environment: can kill server
without loss of important information.

@taylorswift13: hard
midterm? Shake it off
watchin’ my new vids.

 CMU 15-418/618, Spring 2017

Today: many “turn-key” environment-in-a-box services
Offer elastic computing environments for web applications

Amazon Elastic Beanstalk

 CMU 15-418/618, Spring 2017

The story so far: parallelism
scale out, scale out, scale out

(+ elasticity to be able to scale out on demand)

Now: reuse and locality

 CMU 15-418/618, Spring 2017

Recall: basic site configuration

DatabasePHP/Ruby/Python/Node.js
interpreter

Worker Process

Web Server

Requests

$query	=	"SELECT	*	FROM	users	WHERE	username=‘kayvonf’;	
$user	=	mysql_fetch_array(mysql_query($userquery));	
							
echo	“<div>”	.	$user[‘FirstName’]	.	“	“	.	$user[‘LastName’]	.	“</div>”;

Responses

PHP ‘user’ objectHTML ‘users’ table

Response Information Flow

<div>Kayvon Fatahalian</div>

Example PHP Code

 CMU 15-418/618, Spring 2017

Work repeated every page

$query	=	"SELECT	*	FROM	users	WHERE	username=‘kayvonf’;	
$user	=	mysql_fetch_array(mysql_query($userquery));	
							
echo	“<div>”	.	$user[‘FirstName’]	.	“	“	.	$user[‘LastName’]	.	“</div>”;

PHP ‘user’ objectHTML ‘users’ table

Response Information Flow

<div>Kayvon Fatahalian</div>

Example PHP Code

▪ Steps repeated to emit my name at the top of every page:

- Communicate with DB
- Perform query
- Marshall results from database into object model of scripting language
- Generate presentation
- etc...

Remember, DB can be hard to scale!

 CMU 15-418/618, Spring 2017

Solution: cache!

Database
(potentially multiple

machines)

Requests

Load Balancer . . .

Perf. Monitor Web Server

DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Memcached

▪ Cache commonly accessed objects
- Example: memcached, in memory key-value store (e.g., a big hash table)
- Reduces database load (fewer queries)
- Reduces web server load:

- Less data shuffling between DB response and scripting environment
- Store intermediate results of common processing

 CMU 15-418/618, Spring 2017

Caching example
userid	=	$_SESSION[‘userid’];	

check	if	memcache->get(userid)	retrieves	a	valid	user	object	

if	not:	
			make	expensive	database	query	
			add	resulting	object	into	cache	with	memcache->put(userid)	
			(so	future	requests	involving	this	user	can	skip	the	query)	

continue	with	request	processing	logic

▪ Of course, there is complexity associated with keeping caches in sync with data in
the DB in the presence of writes

- Must invalidate cache

- Very simple “first-step” solution: only cache read-only objects

- More realistic solutions provide some measure of consistency

- But we’ll leave this to your distributed computing and database courses

 CMU 15-418/618, Spring 2017

Site configuration

Database
(potentially multiple

machines)

Requests

Load Balancer . . .

Perf. Monitor Web Server

DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

memcached servers
value = get(key)
put(key, value)

 CMU 15-418/618, Spring 2017

Example: Facebook memcached deployment

▪ Facebook, circa 2008
- 800 memcached servers
- 28 TB of cached data

▪ Performance
- 200,000 UDP requests per second @ 173 msec latency
- 300,000 UDP requests per second possible at

“unacceptable” latency

Source: https://www.facebook.com/note.php?note_id=39391378919

https://www.facebook.com/note.php?note_id=39391378919

 CMU 15-418/618, Spring 2017

More caching
▪ Cache web server responses (e.g. entire pages, pieces of pages)

- Reduce load on web servers
- Example: Varnish-Cache application “accelerator”

Database
(potentially multiple

machines)
Requests

Load Balancer . . .

Perf. Monitor
Web Server

DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Memcached servers

Front-End Cache

Front-End Cache

Front-End Cache

Front-End Cache

 CMU 15-418/618, Spring 2017

Caching using content distribution networks (CDNs)
▪ Serving large media assets can be expensive to serve (high bandwidth costs, tie up

web servers)
- E.g., images, streaming video

▪ Physical locality is important
- Higher bandwidth
- Lower latency

London Content Distribution Network
Source: http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html

http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html

 CMU 15-418/618, Spring 2017

CDN usage example (Facebook photos)

Image source URL: (you can definitely see this photo… try it!)
https://scontent.fagc2-1.fna.fbcdn.net/v/t1.0-9/13466473_10153875308143897_4595852336757037043_n.jpg?
oh=f5aac709574b85e58d14534a8770cecb&oe=5973BB23

Facebook page URL: (you can’t get here since you aren’t a friend on my photos access list)
https://www.facebook.com/photo.php?fbid=10153875308143897&set=a.10150275074093897.338852.722973896&type=3&theater

https://scontent.fagc2-1.fna.fbcdn.net/v/t1.0-9/13466473_10153875308143897_4595852336757037043_n.jpg?oh=f5aac709574b85e58d14534a8770cecb&oe=5973BB23
https://scontent.fagc2-1.fna.fbcdn.net/v/t1.0-9/13466473_10153875308143897_4595852336757037043_n.jpg?oh=f5aac709574b85e58d14534a8770cecb&oe=5973BB23
https://www.facebook.com/photo.php?fbid=10153875308143897&set=a.10150275074093897.338852.722973896&type=3&theater

 CMU 15-418/618, Spring 2017

CDN integration

Media Requests

Database

Load Balancer . . .

Perf. Monitor
Web Server

DB Slave
1

Master

Memcached servers

Front-End Cache

Front-End Cache

Front-End Cache

Front-End Cache

Web Server

Web Server

Web Server

DB Slave
2

Local CDN
(Pittsburgh)

Local CDN
(San Francisco)

Page Requests

Page Requests

Media Requests

 CMU 15-418/618, Spring 2017

Summary: scaling modern web sites
▪ Use parallelism

- Scale-out parallelism: leverage many web servers to meet throughput demand
- Elastic scale-out: cost-effectively adapt to bursty load
- Scaling databases can be tricky (replicate, shard, partition by access pattern)

- Consistency issues on writes

▪ Exploit locality and reuse
- Cache everything (key-value stores)

- Cache the results of database access (reduce DB load)
- Cache computation results (reduce web server load)
- Cache the results of processing requests (reduce web server load)

- Localize cached data near users, especially for large media content (CDNs)

▪ Specialize implementations for performance
- Different forms of requests, different workload patterns
- Good example: different databases for different types of requests

 CMU 15-418/618, Spring 2017

Final comments
▪ It is true that performance of straight-line application logic is often very poor in web-

programming languages (orders of magnitude left on the table in Ruby and PHP).

▪ BUT... web development is not just quick hacking in slow scripting languages. Scaling a web
site is a very challenging parallel-systems problem that involves many of the optimization
techniques and design choices studied in this class: just at different scales

- Identifying parallelism and dependencies
- Workload balancing: static vs. dynamic partitioning issues
- Data duplication vs. contention
- Throughput vs. latency trade-offs
- Parallelism vs. footprint trade-offs
- Identifying and exploiting reuse and locality

▪ Many great sites (and blogs) on the web to learn more:
- www.highscalability.com has great case studies (see “All Time Favorites” section)
- James Hamilton’s blog: http://perspectives.mvdirona.com

http://www.highscalability.com
http://perspectives.mvdirona.com

 CMU 15-418/618, Spring 2017

Assignment 4

 CMU 15-418/618, Spring 2017

Assignment 4
▪ You will implement a simple web site that efficiently handles

a request stream

Master server
(load balancer)

Client Requests
Worker

Two six-core CPUs

Worker
Two six-core CPUs

 CMU 15-418/618, Spring 2017

Assignment 4
▪ You will implement a load balancer/scheduler to efficiently

handle a request stream

Master server
(load balancer)

Client request

Worker
Two six-core CPUs

Worker
Two six-core CPUs

Server response

Request forwarded

Worker response

 CMU 15-418/618, Spring 2017

Assignment 4: the master node
▪ The master is a load balancer

▪ The master is structured as an event-driven system
- The master has only one thread of control, but the server as a whole processes client

requests concurrently

Master server
(load balancer)

//	take	action	when	a	request	comes	in	
void	handle_client_request(Client_handle	client_handle,	const	RequestMsg&	req);	

//	take	action	when	a	worker	provides	a	response	
void	handle_worker_response(Worker_handle	worker_handle,	const	ResponseMsg&	resp);

//	sends	a	request	to	a	worker		
void	send_job_to_worker(Worker_handle	worker_handle,	const	RequestMsg&	req);

//	sends	a	response	to	the	client		
void	send_client_response(Client_handle	client_handle,	const	ResponseMsg&	resp);

You implement:

We give you:

 CMU 15-418/618, Spring 2017

Assignment 4: the worker nodes
▪ The worker nodes are responsible for the “heavy lifting”

(executing the specified requests)

Worker node

//	take	action	when	a	request	comes	in	
void	worker_handle_request(const	RequestMsg&	req);

//	send	a	response	back	to	the	master	
void	worker_send_response(const	ResponseMsg&	resp);

//	black-box	logic	to	actually	do	the	work	(and	populate	a	response)	
void	execute_work(const	RequestMsg&	req,	ResponseMsg&	resp);

You implement:

We give you:

 CMU 15-418/618, Spring 2017

Assignment 4: challenge 1
▪ There a number of different types of requests with different

workload characteristics
- Compute intensive requests (both long and short)
- Memory intensive requests…

{"time":	0,		"work":	"cmd=highcompute;x=5",	"resp":	"42"}	
{"time":	10,	"work":	"cmd=highcompute;x=10",	"resp":	"59"}	
{"time":	20,	"work":	"cmd=highcompute;x=15",	"resp":	"78"}	
{"time":	21,	"work":	"cmd=popular;start=2013-02-13;end=2013-03-23",	"resp":	"lecture/cachecoherence1	--	856	views"}	
{"time":	22,	"work":	"cmd=highcompute;x=20",	"resp":	"10"}	
{"time":	23,	"work":	"cmd=highcompute;x=20",	"resp":	"10"}	
{"time":	24,	"work":	"cmd=highcompute;x=20",	"resp":	"10"}	
{"time":	30,	"work":	"cmd=popular;start=2013-02-13;end=2013-03-23",	"resp":	"lecture/cachecoherence1	--	856	views"}	
{"time":	40,	"work":	"cmd=popular;start=2013-02-13;end=2013-03-23",	"resp":	"lecture/cachecoherence1	--	856	views"}	
{"time":	50,	"work":	"cmd=popular;start=2013-02-13;end=2013-03-23",	"resp":	"lecture/cachecoherence1	--	856	views"}

 CMU 15-418/618, Spring 2017

Assignment 4: challenge 2
▪ The load varies over time! Your server must be elastic!
{"time":	0,		"work":	"cmd=highcompute;x=5",	"resp":	"42"}	
{"time":	10,	"work":	"cmd=highcompute;x=10",	"resp":	"59"}	
{"time":	20,	"work":	"cmd=highcompute;x=15",	"resp":	"78"}	
{"time":	21,	"work":	"cmd=popular;start=2013-02-13;end=2013-03-23",	"resp":	"lecture/cachecoherence1	--	856	views"}	
{"time":	22,	"work":	"cmd=highcompute;x=20",	"resp":	"10"}	
{"time":	23,	"work":	"cmd=highcompute;x=20",	"resp":	"10"}	
{"time":	24,	"work":	"cmd=highcompute;x=20",	"resp":	"10"}	
{"time":	30,	"work":	"cmd=popular;start=2013-02-13;end=2013-03-23",	"resp":	"lecture/cachecoherence1	--	856	views"}	
{"time":	40,	"work":	"cmd=popular;start=2013-02-13;end=2013-03-23",	"resp":	"lecture/cachecoherence1	--	856	views"}	
{"time":	50,	"work":	"cmd=popular;start=2013-02-13;end=2013-03-23",	"resp":	"lecture/cachecoherence1	--	856	views"}

//	notification	that	the	worker	is	up	and	running	
void	handle_worker_boot(Worker_handle	worker_handle,	int	tag);

//	ask	for	another	worker	node	
void	request_boot_worker(int	tag);	

//	request	a	worker	be	shut	down	
void	kill_worker(Worker_handle	worker_handle);

You implement:

We give you:

 CMU 15-418/618, Spring 2017

Assignment 4
▪ Goal: service the request stream as efficiently as possible (low

latency response time) using as few workers as possible (low
website operation cost)

▪ Ideas you might want to consider:
- What is a smart assignment of jobs (work) to workers?
- When to [request more/release idle] worker nodes?
- Can overall costs be reduced by caching?

