Lecture 14:

Scaling a Web Site

Scale-out Parallelism, Elasticity, and Caching

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2017

Taylor Swift

Shake it Off
(1989)

“Not happy with your Exam 1 grade? No worries. Plenty of chances to get better!”

- Taylor Swift

(MU 15-418/618, Spring 2017

THE DEAL

The Exam 1 Deal

B No exam 1 solutions will be distributed at this time

m You have the opportunity to redo up to 2 questions (of your
choosing) from the exam, on your own time.
- You may discuss the problems with your classmates, instructor, and TAs.
- You must write your solutions on your own.

- You will get 50% credit for lost points on regraded questions.

- The revised solutions must be handed in by Friday, April 7th

But... there’s a catch!

The Catch

You must hand in your solution to the course staff at a designated
office hours.

And you are not allowed to hand in unless you are able to
successfully answer a series of questions we ask you

The questions will a subset of the questions on exam 1
(or simple follow up variants)

The staff will post times to sign up for 6-minute time slots
- But not until after Spring Break

Today’s focus: the basics of scaling a web site

B |'m going to focus on performance issues
- Parallelism and locality

m Many other issues in developing a successful web platform
- Reliability, security, privacy, etc.

- There are other great courses at CMU for these topics
(distributed systems, databases, cloud computing)

(MU 15-418/618, Spring 2017

A simple web server for static content

while (1)
{

request = wait_for_request();
filename = parse_request(request);

contents = read file(filename);

send contents as response

Question: is site performance a question of throughput or latency?
(we’ll revisit this question later)

CMU 15-418/618, Spring 2017

A simple parallel web server

Parent Process

Worker
Process 1

Worker
Process 2

What factors would you consider in setting
the value of N for a multi-core web server?

N

Worker
Process N

m Parallelism: use all the server’s cores

request = wait_for_request();

while (1)

{
filename
contents

parse_request(request);

read_file(filename);

send contents as response

m Latency hiding: hide long-latency disk read operations (by context switching hetween worker processes)

m Concurrency: many outstanding requests, want to service quick requests while long requests are in progress

(e.g., large file transfer shouldn’t block serving index.html)

m Footprint: don’t want too many threads so that aggregate working set of all threads causes thrashing

CMU 15-418/618, Spring 2017

Example: Apache’s parent process dynamically
manages size of worker pool

Parent Process

/ / e LT L P T Y EPRETEEEEY

Worker Worker : Worker ' Worker ' Worker .

Process 1 Process 2 . Process3 ! 1 Process4 ' :+ Process5 !

o I Lo .

4 Desirable to maintain a few idle workers in
pool (avoid process creation in critical path of
Busy servicing Busy servicing New request 0 servicing requests)

long request long request [1
]
[]
[

(MU 15-418/618, Spring 2017

Limit maximum number of workers to avoid
excessive memory footprint (thrashing)

Parent Process
/ / N Request queue
Worker Worker Worker Worker Worker
Process 1 Process 2 Process 3 Process 4 Process 5
Busy servicing Busy servicing Busy servicing Busy servicing Busy servicing New request -
long request long request request request request 0
[
[
[

Key parameter of Apache’s “prefork” multi-processing module: MaxRequestiorkers

(MU 15-418/618, Spring 2017

Aside: why partition server into processes, not threads?

B Protection

- Don’t want a crash in one worker to bring down the whole web server

- Often want to use non-thread safe libraries (e.g., third-party libraries) in
server operation

m Parent process can periodically recycle workers
(robustness to memory leaks)

m Of course, multi-threaded web server solutions exist as well
(e.g., Apache’s “worker” module)

(MU 15-418/618, Spring 2017

Dynamic web content

Web Server

Worker Process
Requests

- o e wm wm e PHP/Ruby/Python/Node.js
> interpreter

Database
(e.g., mySQL)

Worker Process

s PHP/Ruby/Python/Node.js | | >
interpreter

“Response” is not a static page on disk, but the result of
application logic running in response to a request.

(MU 15-418/618, Spring 2017

=

=) Update Status Add Photo / Video == Ask Question

What's on your mind?

Thanks you! Maybe we can take these billions in savings and cover the
uninsured...

Doctors Urge Their Colleagues To Quit Doing
Worthless Tests : NPR
WWW.Nnpr.org

Nine national medical groups have identified 45 diagnostic
tests, procedures and treatments that they say often are
unnecessary and expensive. The head of one of the
specialty groups says unneeded tests probably account for
$250 billion in health care spending.

Like - Comment - Share - 33 minutes ago near San Francisco, CA

N

Famous street art seen throughout city

Like - Comment - 2 ho

Find Friends - 10 hours ago

Whenever I'm at a presentation and they're having A/V problems, there's an
irresistible urge to jump in and fix it myself.

¥ Like - Comment -)n Twitter - 16 hours ago via Twitter

&9 Brian Park likes this.

Write a comment...

-‘aooed a route on MapMyRUN.com.

““=" 5 miles from MS bldg 99 up to Old Redmond and
~across 520

Redmond, WA 5.32 mi

Al Like - Comment - 20

On This List (32) See All

Vo G S I
N L fi 1 -.

2SRl P

+ Add to this list

List Suggestions

Y add
2
£, T Add

See More Suggestions

>
o
o

>
o
o

Consider the amount of logic and the
number database queries required to
generate your Facebook News Feed.

(MU 15-418/618, Spring 2017

Scripting language performance (poor)

m Two popular content management systems (PHP)

- Wordpress ~ 12 requests/sec/core (DB size = 1000 posts)
- MediaWiki ~ 8 requests/sec/core

[Source: Talaria Inc., 2012]

m Recent interest in making making scripted code execute faster

- Facebook’s HipHop: PHP to C source-to-source converter
- Google’s V8 Javascript engine: JIT Javascript to machine code

(MU 15-418/618, Spring 2017

“Scale out” to increase throughput

Use many web servers to meet site’s throughput goals.

Web Server
Worker Process
’ <
’
? Worker Process
A |
9 o
¢ ¢
Requests " " Web Server
....... ’
:: "i Worker Process
------- '
Load Balancer | * .
------- * N °
| | ~ N *
------- = “ Worker Process
1
1
Load balancer maintains list of available web
servers and an estimate of load on each. “
Distributes requests to pool of web servers. ' s Web Server
(Redistribution logic is cheap: one load)
balancer typically can service many web . Worker Process
servers) * .
Worker Process

T

Database
(e.g., mySQL)

(MU 15-418/618, Spring 2017

Load balancing with persistence

All requests associated with a session are directed to the same server (aka. session affinity, “sticky sessions”)

Web Server Session
4 Worker Process Sate
1, ¥ :
’ 3"
) 14 Worker Process
’
t, A \
' !
Requests N ! Sascion
1. Sessionld =X -’ 'zl" Web Server State
Il B N BN = = = '
2 Sessionld=Y '1" Worker Process “—_
Load Balancer |* : \ Database
- 3:3essionld =X > ' : _» (e.g., mySQL)
4.Sessionld =X “ Worker Process <
'
map(sessionld, serverName) “
'
' 2 .
“ Web Server LS
Good: . State
- Do not have to change web-application . Worker Process g
design to implement scale out X
Bad: o . Worker Process
- Stateful servers can limit load balancing

options. Also, session is lost if server fails CMU 15-418/618, Spring 2017

Desirable: avoid persistent state in web server

Maintain stateless servers, treat sessions as persistent data to be stored in the DB.

Requests

1. Sessionld =X

Load Balancer

Web Server
Worker Process
< .
’ 5
’
’ ’ Worker Process
9 o
¢ 0
’
R Web Server
Y 2K 4
0 ? Worker Process
¢
& o
I N ()
RN ;
“ Worker Process
'\
'\
'\
'
.
'\
N Web Server
'\
'\ Worker Process
Y .
o
o
Worker Process

T

Session State

Database
(e.g., mySQL)

(MU 15-418/618, Spring 2017

Dealing with database contention

Option 1: “scale up”: buy better hardware for database server, buy professional-grade DB that scales

(see database systems course by Prof. Pavlo)

Good: no change to software

Bad: High cost, limit to scaling

Requests

Load Balancer

Web Server

Worker Process

Worker Process

Web Server

Worker Process

Worker Process

Web Server

Worker Process

Worker Process

T

Database
(e.g., mySQL)

(MU 15-418/618, Spring 2017

Scaling out a database: replicate

Replicate data and parallelize reads Adopt relaxed memory models:

(most DB accesses are reads) propagate updates “eventually”,
Cost: extra storage, consistency issues Web Server ;
Worker Process
* : \ 1
’ . Slave Database v
:' Worker Process 4+ Read only
¢ A
Requests R
> R Web Server 3 Slave Database
= === = ¢
,"' Worker Process Read only
ik € Load Balancer |: _ .
e e o o : N ~ - [)
> “ » Worker Process
.
|
.
! * Database
“ Services (writes)
. Web Server
.
. Worker Process
Worker Process

(MU 15-418/618, Spring 2017

Scaling out a database: partition

Web Server
Worker Process
. :
q °
4
’ Worker Process
¢ A
Requests . R
9 ¢
e ,', Web Server
," Worker Process
Il B IH =H = = '
> Load Balancer | : . - >
B B O N = % ~ N -
> “ » Worker Process
 }
|
 }
 }
 }
 }
Can tune database for access ' Web Server
characteristics of data stored % Worker Process
(common to use different database | :
implementations for different -
Worker Process

workloads)

Clickstream data
(writes)

Users A-M profile
(reads and writes)

Users N-Z profile
(reads and writes)

Users photos
(reads and writes)

(MU 15-418/618, Spring 2017

Inter-request parallelism

Parallelize generation of a single page

Web Server

Worker Process

Worker Process

Page

Request
==

Load Balancer

Web Server

Worker Process

Worker Process

Web Server

Worker Process

amazon

Shop by
Department v~

Kayvon's Amazon.com Today's Deals GiftCards Help

Search Al »

More Iltems to Consider

You viewed

e

A Primer on Memory
Consistency and...
Daniel J. Sorin, Mark D. Hill,
David...

Paperback
e e 9! (2)

Customers who viewed this also viewed
T]

[——
B CCTTTTTTE

The Memory System

MRy SYSTENS |-

Memory Systems: Cache, The Memory System: You

DRAM, Disk Can't Avoid It...
Bruce Jacob, Spencer Ng, Bruce Jacob
David Wang Paperback
Paperback YRR (1)
CIOIOIC (8) 23000 $23.88

£424.50 $86.61

» View or edit your browsing history

New For You

SKYFALL

L5

Skyfall
Amazon Instant Video
ool (1,297)

Why recommended?

7
“BIARNE STROUSTRUT

Rise of the Guardians The C++ Programming

Amazon Instant Video Language, 4th...
Yododododc (83) Bjarne Stroustrup
Paperback

Why recommended?
d £7499 $51.91

Why recommended?

kindle fire e
I’-l om

Hello, Kayvon Your '\ 0 / Wish
Your Account~v Prime v e Cartv List ~

Cache Memory Book, The,
Second Edition

OpenGL Programming
Guide: The...

Dave Shreiner, Graham
Sellers, ...

Paperback
£55.99 $50.86

Why recommended?

* St. Patrick’s |
>Shop now

Streaming videos now included with
amazon Frime

» Watch now

Advertisement N_I

M |t’'s Your Money
Keep More of It With

TurboTax 2012

» Shop now

Luxury Pens

‘_ 'l | 4"‘)| - ,r I l “"' yv |) |
vl vUuay :
" ‘ O »Shop now \

o~

Worker Process

Amount of user trafficis directly correlated to response latency.

See great post:

http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx

Recommender Service

Notification/
Feed Aggregator

Advertising Service

(MU 15-418/618, Spring 2017

How many web servers do you need?

(MU 15-418/618, Spring 2017

Web trafficis bursty

Amazon.com Page Views

Daily Pageviews (percent)
damazon.com

-
- —
- -
— -
05.— —
.
- -
- —
- —

Holiday shopping season

More examples:

- Facebook gears up for bursts of image
uploads on Halloween and New Year’s Eve

- Twitter topics trend after world events

HuffingtonPost.com Page Views Per Week

Directly Measured qJuoxntcast

25M

20M

15M

10M
2/2012 3/2012

HuffingtonPost.com Page Views Per Day

o Directly Measured QUxntcast

2/2012 3/2012

(fewer people read news on weekends)

(MU 15-418/618, Spring 2017

15-418/618 site traffic

Spring 2015

® Pageviews

30,000

15,000

Exam 1

24,132

Spring 2016

® Pageviews

50,000

25,000

Feb 8

Feb 15

Feb 22

34,436

Jan 15

Spring 2017

® Pageviews

50,000

25,000

Jan 22

Jan 29

Interesting 2017 fact: page views per student on

Feb 5

Feb 12

Feb 19

Feb 24

the day of the exam was within 1% of that for 2016)

39,594

an 29

Feb 5

Feb 12

Feb 1

Feb 26

(MU 15-418/618, Spring 2017

Problem

m Site load is bursty

m Provisioning site for the average case load will result in poor
quality of service (or failures) during peak usage

- Peak usage tends to be when users care the most... since by the definition the
site is important at these times

B Provisioning site for the peak usage case will result in many
idle servers most of the time

- Not cost efficient (must pay for many servers, power/cooling, datacenter
space, etc.)

(MU 15-418/618, Spring 2017

Elasticity!

Main idea: site automatically adds or removes web
servers from worker pool based on measured load

Need source of servers available on-demand amazon
- Amazon.com EC2 instances ')

Google Cloud Platform
- Google Cloud Platform S
- Microsoft Azure

Bm Microsoft Azure

(MU 15-418/618, Spring 2017

Example: Amazon’s elastic compute cloud (EC2)

Amazon.com Page Views

Daily Pageviews (percent)
damazon.com

0.5

2011 2012

® Amazon had an over-provisioning problem

- Need to provision for e-commerce bursts to avoid losing sales
- Unused capacity during large parts of the year

m Solution: make machines available for rent to others in need of compute

- For those that don’t want to incur cost of, or have expertise to, manage own
machines at scale

- For those that need elastic compute capability

(MU 15-418/618, Spring 2017

Amazon EC2 US West (Oregon) on-demand pricing

vCPU ECU

Compute Optimized - Current Generation

1vCPU ~ 1 hyper o4 large 2 8

thread on a “Haswell” ., ...) o
E5-2666 v3 CPU - . .
c4.4xlarge 16 62
c4.8xlarge 36 132

c3.large 2 7

c3.xlarge 4 14

c3.2xlarge g 28

c3.4xlarge 16 55
c3.8xlarge 32 108

1 TES|a K80 GPU Instances - Current Generation
\ p2.xlarge 4 12

8 Tesla K80s — > P2 » o
p2.16xlarge 64 188

g2.2xlarge 8 26
g2.8xlarge 32 104

Memory Optimized - Current Generation

x1.16xlarge 64 174.5
x1.32xlarge 128 349
rd.large 2 6.5

Memory (GiB)

3.75

7.5

15

30

60

3.75

7.5

15

30

60

61

488

732

15

60

976

1952

15

Instance Storage (GB)

EBS Only
EBS Only
EBS Only
EBS Only
EBS Only
2 x 16 SSD
2 x40 SSD
2 x 80 SSD
2 x 160 SSD

2 x320 SSD

EBS Only

EBS Only

EBS Only
60 SSD

2x120 SSD

1 x 1920 SSD

2 x 1920 SSD

1 x32 SSD

Linux/UNIX Usage

$0.1 per Hour
$0.199 per Hour
$0.398 per Hour
$0.796 per Hour
$1.591 per Hour
$0.105 per Hour
$0.21 per Hour
$0.42 per Hour
$0.84 per Hour

$1.68 per Hour

$0.9 per Hour
$7.2 per Hour
$14.4 per Hour
$0.65 per Hour

$2.6 per Hour

$6.669 per Hour

$13.338 per Hour

$0.166 per Hour

(MU 15-418/618, Spring 2017

Site configuration: normal load

Requests

Perf. Monitor
Load: moderate

Load Balancer

Web Server

Database
(potentially multiple
machines)

Web Server

DB Slave 1

Master

DB Slave 2

Web Server

(MU 15-418/618, Spring 2017

Event triggers spike in load

Requests

Perf. Monitor
Load: high

Load Balancer

@taylorswift13: parallel

G885 dlass @ CMU is the bomb
(N ;" 4 checkitout! #15418.
TN -
! |
Database
s’ '; Web Server (potentially multiple
SO machines)
s’ W
¢' L
(T m m = *
T o Web Server) DB Slave 1
e~ Master
MRITRE
“s N DB Slave 2
L G
‘s‘ S
\:s -\
“ Web Server
|

Heavily loaded servers: slow response times

(MU 15-418/618, Spring 2017

Heavily loaded servers = slow response times

B [frequests arrive faster than site can service them, queue lengths will grow

B Latency of servicing request is wait time in queue + time to actually process
request

- Assume site has capability to process R requests per second
- Assume queue lengthis L
- Timein queue=L/R

B How does site throughput change under heavy load?

Request queue
Worker Worker Worker Worker Worker
Process 1 Process 2 Process 3 Process 4 Process 5
Busy servicing Busy servicing Busy servicing Busy servicing Busy servicing New request -
long request long request request request request 0
i
[
i

(MU 15-418/618, Spring 2017

Site configuration: high load

Site performance monitor detects high load
Instantiates new web server instances
Informs load balancer about presence of new servers

Requests

Perf. Monitor
Load: moderate

Load Balancer

Web Server

Web Server

Web Server

Database
(potentially multiple
machines)

DB Slave 1

DB Slave 2

Master

(MU 15-418/618, Spring 2017

Site configuration: return to normal load

Site performance monitor detects low load @taylorswift13: hard

Released extra server instances (to save operating cost) = midterm? Shake it off
Informs load balancer about loss of servers 7 [8 watchin’ my new vids.
},
ey L /
WebServr, .
Perf. Monitor AL DL
Requests Load: too low Database
N Web Server (potentially multiple
oI ',"1 machines)
4
I = N N = = * ¢"¢ g
DB Slave 1
I Load Balancer LT > Web Server v
3: Master
------* :s [DBSlaVEZ
\ “ o
) 3
. \ 3
) 3
%
o) Web Server
T T
. . ! N at®
Note convenience of stateless serversin _ Webserdr
. , yns®® "rag,
elastic environment: can kill server SO S
. . . . v .
without loss of important information. | ~""*= Websert " .*
i gn® | B Ta, e
B il Yua!

(MU 15-418/618, Spring 2017

Today: many “turn-key” environment-in-a-box services

Offer elastic computing environments for web applications

CO*)gle
weDsa Voo g RIGHT SCaLe)
Amazon Elastic Beanstalk & $ & E{llaﬁérég

’) Google Cloud Platform

(MU 15-418/618, Spring 2017

The story so far: parallelism
scale out, scale out, scale out

(+ elasticity to be able to scale out on demand)

Now: reuse and locality

(MU 15-418/618, Spring 2017

Recall: basic site configuration

Web Server
Requests
- == Worker Process
il PHP/Ruby/Python/Node.js | [> JEIEL AR
interpreter
Responses
B
B
Example PHP Code

'$query = "SELECT * FROM users WHERE username=‘kayvonf’;
$user = mysql_fetch_array(mysql_query($userquery));

Eecho “div>” . $user[‘FirstName’] . “ “ . $user[‘LastName’] . “</div>”;i

Response Information Flow

HTML PHP ‘user’ object ‘users’ table

<div>Kayvon Fatahalian</div>

(MU 15-418/618, Spring 2017

Work repeated every page

Example PHP Code

Hello, Ka j
Your Account v \-.,Cart v

'$query = "SELECT * FROM users WHERE username=‘kayvonf’;
$user = mysql_fetch_array(mysql_query($userquery));

recho “<div>” . $user[‘FirstName’] . “ “ . $user[‘LastName’] . “</div>”;i

B Steps repeated to emit my name at the top of every page:

HTML

Response Information Flow

PHP ‘user’ object

<div>Kayvon Fatahalian</div>

Communicate with DB

Perform query

‘users’ table

Remember, DB can be hard to scale!

Marshall results from database into object model of scripting language
Generate presentation

etc...

(MU 15-418/618, Spring 2017

Solution: cache!

m (ache commonly accessed objects

- Example: memcached, in memory key-value store (e.g., a big hash table)

- Reduces database load (fewer queries)

- Reduces web server load:
- Less data shuffling between DB response and scripting environment

Requests

- Store intermediate results of common processing

Perf. Monitor

Load Balancer

Web Server

Web Server

Web Server

Web Server

7
—

Memcached

Database
(potentially multiple
machines)

DB Slave 1

Master

DB Slave 2

(MU 15-418/618, Spring 2017

Caching example

userid = $ SESSION[‘userid’];

check if memcache->get(userid) retrieves a valid user object

if not:
make expensive database query
add resulting object into cache with memcache->put(userid)
(so future requests involving this user can skip the query)

continue with request processing logic

m Of course, there is complexity associated with keeping caches in sync with data in
the DB in the presence of writes

- Must invalidate cache
- Very simple “first-step” solution: only cache read-only objects
- More realistic solutions provide some measure of consistency

- But we'll leave this to your distributed computing and database courses

(MU 15-418/618, Spring 2017

Site configuration

Requests

Perf. Monitor

Load Balancer

memcached servers
value = get(key)
put(key, value)
Web Server
Database
Web Server . (potentially multiple
’ machines)
Web S
eb Server DB Slave 1
Master
DB Slave 2
Web Server /

(MU 15-418/618, Spring 2017

Example: Facebook memcached deployment

® Facebook, circa 2008

- 800 memcached servers
- 28 TB of cached data

m Performance
- 200,000 UDP requests per second @ 173 msec latency

- 300,000 UDP requests per second possible at
“unacceptable” latency

Source: https://www.facebook.com/note.php?note_id=39391378919
(MU 15-418/618, Spring 2017

https://www.facebook.com/note.php?note_id=39391378919

More caching

m (Cache web server responses (e.g. entire pages, pieces of pages)
- Reduce load on web servers

- Example: Varnish-Cache application “accelerator”
o © VARNISH

Requests

Perf. Monitor

Load Balancer

CACHE

Front-End Cache |-

Front-End Cache

Front-End Cache |*

Front-End Cache

- P Web Server
Web Server
- =P Web Server
Web Server

Memcached servers

Database
(potentially multiple
machines)

DB Slave 1

Master

DB Slave 2

(MU 15-418/618, Spring 2017

Caching using content distribution networks (CDNs)

® Serving large media assets can be expensive to serve (high bandwidth costs, tie up
web servers)

- E.g.,images, streaming video @@ o
. o 4 IS @ cloudfront
m Physical locality is important /}'/, O
- Higher bandwidth A
- Lower latency 7

ek © i‘ O

Edge Location
Location

London Content Distribution Network
Source: http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.htmi

(MU 15-418/618, Spring 2017

http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html

ook photos)

Kayvon Fatahalian
pemfgs June 24,2016 - ¥ ¥

Caption?

(DN usage example (Faceb

. _

@ TagPhoto ©Q AddLocation ' Edit

ifr Like Commen t ~ Share

Y onFostos

~A4}= Japan."
Like + Reply - June 24, 2016 at 9:44am

I Gt that man some green tea!

Like - Reply - June 24, 2016 at 9:57am

n Like - Reply - June 24, 2016 at 10:14am
- Like - Reply - June 24, 2016 at 10:33am

‘\;'.,
T :& | iL ’ '. ' -
Facebook page URL: (you can’t get here since you aren’t a friend on my photos access list)
https://www.facebook.com/photo.php?fbid=10153875308143897&set=a.10150275074093897.338852.722973896&type=3&theater

Image source URL: (you can definitely see this photo... tryit!)
https://scontent.fagc2-1.fna.fbcdn.net/v/t1.0-9/13466473 10153875308143897 4595852336757037043 n.jpqg?
oh=f5aac709574b85e58d14534a8770cech&oe=5973BB23 CMU 15-418/618, Spring 2017

https://scontent.fagc2-1.fna.fbcdn.net/v/t1.0-9/13466473_10153875308143897_4595852336757037043_n.jpg?oh=f5aac709574b85e58d14534a8770cecb&oe=5973BB23
https://scontent.fagc2-1.fna.fbcdn.net/v/t1.0-9/13466473_10153875308143897_4595852336757037043_n.jpg?oh=f5aac709574b85e58d14534a8770cecb&oe=5973BB23
https://www.facebook.com/photo.php?fbid=10153875308143897&set=a.10150275074093897.338852.722973896&type=3&theater

CDN integration

84

P

Media Requests
B ""% Local (DN
AR B > | (Pittsburgh)
age Requests
E ; o «
: ; P Perf. Monitor
: l Lo ,""
E : IREE ,"'ﬂ
: s === > re
T _: Load Balancer 1 :;
m e e > ‘o
: |mmmmmmmsmmssmmmmmes > s
. Page Requests EERE = |
E gy iy E Local CDN
'} — - - - < (San Francisco)
=== P

,»3 r} Media Requests
ol o

Front-End Cache

Front-End Cache

Front-End Cache

Front-End Cache

Memcached servers

Database

DB Slave
1

- Web Server

Web Server

- = Web Server
Web Server

Master
DB Slave

2

(MU 15-418/618, Spring 2017

Summary: scaling modern web sites

m Use parallelism

- Scale-out parallelism: leverage many web servers to meet throughput demand
- Elastic scale-out: cost-effectively adapt to bursty load
- Scaling databases can be tricky (replicate, shard, partition by access pattern)

- Consistency issues on writes

m Exploit locality and reuse

- (Cache everything (key-value stores)
- (Cache the results of database access (reduce DB load)
- (Cache computation results (reduce web server load)
- (Cache the results of processing requests (reduce web server load)

- Localize cached data near users, especially for large media content (CDNs)

m Specialize implementations for performance

- Different forms of requests, different workload patterns

- Good example: different databases for different types of requests
(MU 15-418/618, Spring 2017

Final comments

B |tis true that performance of straight-line application logic is often very poor in web-
programming languages (orders of magnitude left on the table in Ruby and PHP).

B BUT... web development is not just quick hacking in slow scripting languages. Scaling a web
site is a very challenging parallel-systems problem that involves many of the optimization
techniques and design choices studied in this class: just at different scales

- ldentifying parallelism and dependencies

- Workload balancing: static vs. dynamic partitioning issues
- Data duplication vs. contention

- Throughput vs. latency trade-offs

- Parallelism vs. footprint trade-offs

- Identifying and exploiting reuse and locality

B Many great sites (and blogs) on the web to learn more:
- www.highscalability.com has great case studies (see “All Time Favorites” section)
- James Hamilton’s blog: http://perspectives.mvdirona.com

(MU 15-418/618, Spring 2017

http://www.highscalability.com
http://perspectives.mvdirona.com

Assignment 4

(MU 15-418/618, Spring 2017

Assignment 4

m You willimplement a simple web site that efficiently handles
a request stream

Worker
Client Requests Two six-core CPUs
............ .>
............ > Master server
____________ > (load balancer)
............ .>
Worker

Two six-core CPUs

(MU 15-418/618, Spring 2017

Assignment 4

m You willimplement a load balancer/scheduler to efficiently
handle a request stream

Client request

e ——

Server response

—

Master server
(load balancer)

Worker
Two six-core CPUs

Worker
Two six-core CPUs

(MU 15-418/618, Spring 2017

Assignment 4: the master node

B The masteris aload balancer

B The master is structured as an event-driven system

- The master has only one thread of control, but the server as a whole processes client
requests concurrently

Master server
(load balancer)

You implement:

// take action when a request comes in
void handle_client request(Client_handle client_handle, const RequestMsg& req);

// take action when a worker provides a response
void handle_worker_response(Worker_handle worker_handle, const ResponseMsg& resp);

We give you:

// sends a request to a worker
void send_job_to worker(Worker handle worker handle, const RequestMsg& req);

// sends a response to the client
void send _client response(Client handle client handle, const ResponseMsg& resp);

(MU 15-418/618, Spring 2017

Assignment 4: the worker nodes

B The worker nodes are responsible for the “heavy lifting”
(executing the specified requests)

You implement:

// take action when a request comes in
void worker_handle request(const RequestMsg& req);

Worker node

We give you:

// send a response back to the master
void worker_send response(const ResponseMsg& resp);

// black-box logic to actually do the work (and populate a response)
void execute work(const RequestMsg& req, ResponseMsg& resp);

(MU 15-418/618, Spring 2017

Assignment 4: challenge 1

B There a number of different types of requests with different
workload characteristics

P P e e e e e P P P

"time
"time":
"time":
"time":
"time" :
"time":
"time":
"time":
"time
"time":

Compute intensive requests (both long and short)

Memory intensive requests...

": 0,
10, "
20, "
21, "
22, "
23, "
24, "
30, "
": 40, "

50,

"work":
work" :
work" :
work" :
work" :
work":
work" :
work" :
work" :
"work":

"cmd=highcompute;x=5", "resp": "42"}
"cmd=highcompute;x=10", "resp": "59"}
"cmd=highcompute;x=15", "resp": "78"}
"cmd=popular;start=2013-02-13;end=2013-03-23"
"cmd=highcompute;x=20", "resp": "10"}
"cmd=highcompute;x=20", "resp": "10"}
"cmd=highcompute;x=20", "resp": "10"}
"cmd=popular;start=2013-02-13;end=2013-03-23"
"cmd=popular;start=2013-02-13;end=2013-03-23"
"cmd=popular;start=2013-02-13;end=2013-03-23"

o

o

o

llrespll :

Ilr‘espll:
llr‘espll:
llrespll:

"lecture/cachecoherencel -- 856 views"}
"lecture/cachecoherencel -- 856 views"}
"lecture/cachecoherencel -- 856 views"}
"lecture/cachecoherencel -- 856 views"}

(MU 15-418/618, Spring 2017

Assignment 4: challenge 2

B The load varies over time! Your server must be elastic!

{"time": O, "work": "cmd=highcompute;x=5", "resp": "42"}

{"time": 10, "work": "cmd=highcompute;x=10", "resp": "59"}

{"time": 20, "work": "cmd=highcompute;x=15", "resp": "78"}

{"time": 21, "work": "cmd=popular;start=2013-02-13;end=2013-03-23", "resp": "lecture/cachecoherencel -- 856 views"}
{"time": 22, "work": "cmd=highcompute;x=20", "resp": "10"}

{"time": 23, "work": "cmd=highcompute;x=20", "resp": "10"}

{"time": 24, "work": "cmd=highcompute;x=20", "resp": "10"}

{"time": 30, "work": "cmd=popular;start=2013-02-13;end=2013-03-23", "resp": "lecture/cachecoherencel -- 856 views"}
{"time": 40, "work": "cmd=popular;start=2013-02-13;end=2013-03-23", "resp": "lecture/cachecoherencel -- 856 views"}
{"time": 50, "work": "cmd=popular;start=2013-02-13;end=2013-03-23", "resp": "lecture/cachecoherencel -- 856 views"}

We give you:

// ask for another worker node
void request_boot_worker(int tag);

// request a worker be shut down
void kill worker(Worker_handle worker _handle);

You implement:

// notification that the worker is up and running
void handle_worker_boot(Worker_handle worker _handle, int tag);

(MU 15-418/618, Spring 2017

Assignment 4

B Goal: service the request stream as efficiently as possible (low
latency response time) using as few workers as possible (low
website operation cost)

B |deas you might want to consider:
- What is a smart assignment of jobs (work) to workers?
- When to [request more/release idle] worker nodes?
- (Can overall costs be reduced by caching?

(MU 15-418/618, Spring 2017

