
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2017

Lecture 16:

Implementing
Synchronization

 CMU 15-418/618, Spring 2017

Chuck Berry
Johnny B. Goode

Tunes

(1926 - 2017)

 CMU 15-418/618, Spring 2017

A few more words on projects

 CMU 15-418/618, Spring 2017

Final project expectations
Frequently asked questions:

Q. Do I need to do something that no one has done before?
A. Absolutely not! However I expect you to take on a challenge where I believe the answer should
not be obvious to you based on what you’ve learned in the course so far.

Common scenario: Student says: “I am going to run a cat detector on 100M images from
Facebook and parallelize it on a cluster.” Prof. Kayvon: convince me why this is hard?

Q. Can my project be a part of something bigger? (e.g., a project from my research lab)
A. Absolutely. But you must make it clear what part is only being done by you for a grade in this class.

Q. How much work is expected for a “good” grade?
A. Including the proposal period, the project is 5-6 weeks of the course. We are expecting
proportional effort.

Q. What if I need special equipment to do my project?
A. Contact the staff soon. We can help you find resources around CMU: high-core count CPUs, GPUs,
Oculus Rifts, FPGAs, Raspberry Pi’s, Tegra X1’s, AWS/Google Cloud credits, etc.

 CMU 15-418/618, Spring 2017

Final project expectations
Frequently asked questions:

Q. I feel clueless thinking of a project!
A. That’s part of the point. Come talk to the staff to brainstorm, but the point of the project is to get
you to explore (and not just do what I tell you to do.)

 CMU 15-418/618, Spring 2017

Final project expectations
▪ Project proposals are due on April 10 (but you are welcome to submit early to get

feedback… often we have to iterate)

▪ Final presentations on are Friday May 12th (everyone presents on this day)

▪ Your grade is independent of the parallelism competition results
- It is based on the technical quality of your work, your writeup, and your

presentation (the parallelism competition is just for fun)
- Finalist presentations will be during our exam slot on the morning of the 12th

▪ You are absolutely encouraged to design your own project
- This is supposed to be fun (and challenging)
- There is a list of project ideas on the web site to help (I will be adding to it)

 CMU 15-418/618, Spring 2017

Review: how threads map to cores… again!

Execution
Context

Execution
Context

Fetch/
Decode

Exec 1

L1 Cache

L2 Cache

L3 Cache
Memory

Controller

Memory Bus
(to DRAM)

On-chip
interconnect

Execution
Context

Execution
Context

Fetch/
Decode

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Exec 1

L1 Cache

L2 Cache

Let’s say I have a processor with 4 cores, with support for 2 execution contexts per core.
In each clock, each core executes one instruction (from one execution context)

 CMU 15-418/618, Spring 2017

I can run many programs on this computer
concurrently
For example, let’s take a look at what’s running on my Mac.

Many processes, many of which have spawned many logical threads.
Many more logical threads than cores (and more threads than HW execution contexts)

“Who” is responsible for choosing what threads execute on the processor?

 CMU 15-418/618, Spring 2017

What does running one thread entail?
▪ A processor runs a logical thread by executing its instructions within a

hardware execution context.

▪ If the operating system wants thread T of process P to run, it:
1. Chooses a CPU execution context
2. It sets the register values in that context to the last state of the thread

(e.g., sets PC to point to next instruction the thread must run, sets stack
pointer, VM mappings, etc.)

3. Then the processor starts running… It grabs the next instruction
according to the PC, and executes it:
- If the instruction is: add	r0,	r1,	r2; then the processor adds the contents of r1 and

r2 and stores the result in r0

- If the instruction is:	ld	r0	mem[r1]; then the processor takes contents of r1,
translates it to a physical address according to the page tables referenced by the
execution context, and loads the value at that address into r0

- Etc…

 CMU 15-418/618, Spring 2017

The operating system maps logical threads
to execution contexts

Since there are more threads than execution contexts, the operating system must
interleave execution of threads on the processor
Periodically… the OS will:
1. Interrupts the processor
2. Copies the register state of threads currently mapped to execution contexts to OS data structures in memory
3. Copies the register state of other threads it now wants to run onto the processors execution context registers
4. Tell the processor to continue

- Now these logical threads are running on the processor

 CMU 15-418/618, Spring 2017

But how do 2 execution contexts run on a core
that can only run one instruction per clock?

Execution
Context

Execution
Context

Fetch/
Decode

Exec 1

L1 Cache

L2 Cache

L3 Cache
Memory

Controller

Memory Bus
(to DRAM)

On-chip
interconnect

Execution
Context

Execution
Context

Fetch/
Decode

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Exec 1

L1 Cache

L2 Cache

It is the responsibility of the processor (without OS intervention) to choose how to interleave execution
of instructions from multiple execution contexts on the resources of a single core.
This is the idea of hardware multi-threading from Lecture 2.

 CMU 15-418/618, Spring 2017

Output of ‘less /proc/cpuinfo’ on latedays
- Dual CPU (two socket)
- Six-cores per CPU, two threads per core
- Linux has 24 execution contexts to fill

…

Linux reports it is running on a machine with 24
“logical processors” (corresponding to the 24
execution contexts available on the machine)

 CMU 15-418/618, Spring 2017

Today’s topic: efficiently implementing
synchronization primitives

▪ Primitives for ensuring mutual exclusion
- Locks

- Atomic primitives (e.g., atomic_add)

- Transactions (later in the course)

▪ Primitives for event signaling
- Barriers

- Flags

 CMU 15-418/618, Spring 2017

Three phases of a synchronization event

1. Acquire method
- How a thread attempts to gain access to protected resource

2. Waiting algorithm
- How a thread waits for access to be granted to shared resource

3. Release method
- How thread enables other threads to gain resource when its

work in the synchronized region is complete

 CMU 15-418/618, Spring 2017

Busy waiting

▪ Busy waiting (a.k.a. “spinning”)
while	(condition	X	not	true)	{}	

logic	that	assumes	X	is	true	

▪ In classes like 15-213 or in operating systems, you have
certainly also talked about synchronization
- You might have been taught busy-waiting is bad: why?

 CMU 15-418/618, Spring 2017

“Blocking” synchronization
▪ Idea: if progress cannot be made because a resource cannot

be acquired, it is desirable to free up execution resources for
another thread (preempt the running thread)

if	(condition	X	not	true)	

			block	until	true;		//	OS	scheduler	de-schedules	thread	
																									//	(let’s	another	thread	use	the	processor)	

▪ pthreads mutex example

pthread_mutex_t	mutex;	

pthread_mutex_lock(&mutex);

 CMU 15-418/618, Spring 2017

Busy waiting vs. blocking
▪ Busy-waiting can be preferable to blocking if:

- Scheduling overhead is larger than expected wait time
- A processor’s resources not needed for other tasks

- This is often the case in a parallel program since we usually don’t oversubscribe
a system when running a performance-critical parallel app (e.g., there aren’t
multiple CPU-intensive programs running at the same time)

- Clarification: be careful to not confuse the above statement with the value of
multi-threading (interleaving execution of multiple threads/tasks to hiding
long latency of memory operations) with other work within the same app.

▪ Examples:
int	lock;	

OSSpinLockLock(&lock);			//	OSX	spin	lock

pthread_spinlock_t	spin;	

pthread_spin_lock(&spin);				

 CMU 15-418/618, Spring 2017

Implementing Locks

 CMU 15-418/618, Spring 2017

Warm up: a simple, but incorrect, lock

lock:

unlock:

ld			R0,	mem[addr]						//	load	word	into	R0	
cmp		R0,	#0													//	compre	R0	to	0	
bnz		lock															//	if	nonzero	jump	to	top	
st			mem[addr],	#1											

st			mem[addr],	#0						//	store	0	to	address										

Problem: data race because LOAD-TEST-STORE is not atomic!
Processor 0 loads address X, observes 0
Processor 1 loads address X, observes 0
Processor 0 writes 1 to address X
Processor 1 writes 1 to address X

 CMU 15-418/618, Spring 2017

Test-and-set based lock

Atomic test-and-set instruction:
ts	R0,	mem[addr]							//	load	mem[addr]	into	R0	
																							//	if	mem[addr]	is	0,	set	mem[addr]	to	1

lock:

unlock:

ts			R0,	mem[addr]								//	load	word	into	R0							
bnz		R0,	lock													//	if	0,	lock	obtained									

st			mem[addr],	#0								//	store	0	to	address										

 CMU 15-418/618, Spring 2017

Test-and-set lock: consider coherence traffic
Processor 1 Processor 2

BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 3

Invalidate lineT&S

[P1 is holding lock...]

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Update line in cache (set to 1)

Invalidate line
BusRdX
Update line in cache (set to 0)
Invalidate line

= thread has lock

 CMU 15-418/618, Spring 2017

Check your understanding

▪ On the previous slide, what is the duration of time the thread
running on P0 holds the lock?

▪ At what points in time does P0’s cache contain a valid copy of
the cache line containing the lock variable?

 CMU 15-418/618, Spring 2017

Test-and-set lock performance

Benchmark	executes:	
lock(L);	
critical-section(c)	
unlock(L);

Ti
m

e (
us

)

Number of processors

Benchmark: execute a total of N lock/unlock sequences (in aggregate) by P processors
Critical section time removed so graph plots only time acquiring/releasing the lock

Bus contention increases amount of
time to transfer lock (lock holder must
wait to acquire bus to release)

Not shown: bus contention also slows
down execution of critical section

Figure credit: Culler, Singh, and Gupta

 CMU 15-418/618, Spring 2017

x86 cmpxchg
▪ Compare and exchange (atomic when used with lock prefix)

lock	cmpxchg	dst,	src

if	(dst	==	EAX)	
				ZF	=	1	
				dst	=	src	
else	
				ZF	=	0	
				EAX	=	dst

often a memory address

x86 accumulator register

flag register

lock prefix (makes operation atomic)

bool	compare_and_swap(int*	x,	int	a,	int	b)	{	
			if	(*x	==	a)	{	
					*x	=	b;	
					return	true;	
			}	

			return	false;	
}

Self-check: Can you implement assembly for
atomic compare-and-swap using cmpxchg?

 CMU 15-418/618, Spring 2017

Desirable lock performance characteristics
▪ Low latency

- If lock is free and no other processors are trying to acquire it, a processor should
be able to acquire the lock quickly

▪ Low interconnect traffic
- If all processors are trying to acquire lock at once, they should acquire the lock in

succession with as little traffic as possible

▪ Scalability
- Latency / traffic should scale reasonably with number of processors

▪ Low storage cost

▪ Fairness
- Avoid starvation or substantial unfairness

- One ideal: processors should acquire lock in the order they request access to it

Simple test-and-set lock: low latency (under low contention), high traffic, poor scaling,
low storage cost (one int), no provisions for fairness

 CMU 15-418/618, Spring 2017

Test-and-test-and-set lock
void	Lock(int*	lock)	{	
		while	(1)	{	
					
				while	(*lock	!=	0);	
					
					
					
				if	(test_and_set(*lock)	==	0)	
						return;	
		}	
}	

void	Unlock(int*	lock)	{	
			*lock	=	0;	
}

//	while	another	processor	has	the	lock…	
//	(assume	*lock	is	NOT	register	allocated)	

//	when	lock	is	released,	try	to	acquire	it									

 CMU 15-418/618, Spring 2017

Test-and-test-and-set lock: coherence traffic
Processor 1 Processor 2

BusRdX

Update line in cache (set to 1)

[P1 is holding lock...]

BusRdX

Update line in cache (set to 0)

Invalidate line

Invalidate line

BusRd

[Many reads from local cache]

Invalidate line

BusRd
BusRdX
Update line in cache (set to 1)

Invalidate line

Processor 3
Invalidate line

BusRd

[Many reads from local cache]

Invalidate line

BusRd

BusRdX
Attempt to update (t&s fails)

T&S

T&S

T&S

= thread has lock

 CMU 15-418/618, Spring 2017

Test-and-test-and-set characteristics
▪ Slightly higher latency than test-and-set in uncontended case

- Must test... then test-and-set

▪ Generates much less interconnect traffic
- One invalidation, per waiting processor, per lock release (O(P) invalidations)

- This is O(P2) interconnect traffic if all processors have the lock cached

- Recall: test-and-set lock generated one invalidation per waiting processor per test

▪ More scalable (due to less traffic)

▪ Storage cost unchanged (one int)

▪ Still no provisions for fairness

 CMU 15-418/618, Spring 2017

Test-and-set lock with back off

void	Lock(volatile	int*	l)	{	
		int	amount	=	1;	
		while	(1)	{	
				if	(test_and_set(*l)	==	0)	
						return;	
				delay(amount);	
				amount	*=	2;	
		}	
}

Upon failure to acquire lock, delay for awhile before retrying

▪ Same uncontended latency as test-and-set, but potentially higher latency under
contention. Why?

▪ Generates less traffic than test-and-set (not continually attempting to acquire lock)
▪ Improves scalability (due to less traffic)
▪ Storage cost unchanged (still one int for lock)
▪ Exponential back-off can cause severe unfairness
- Newer requesters back off for shorter intervals

 CMU 15-418/618, Spring 2017

Ticket lock
Main problem with test-and-set style locks: upon
release, all waiting processors attempt to acquire lock
using test-and-set

struct	lock	{	
			int	next_ticket;	
			int	now_serving;	
};	

void	Lock(lock*	l)	{	
		int	my_ticket	=	atomic_increment(&l->next_ticket);			//	take	a	“ticket”	
		while	(my_ticket	!=	l->now_serving);																	//	wait	for	number		
}																																																						//	to	be	called	

void	unlock(lock*	l)	{	
		l->now_serving++;	
}

No atomic operation needed to acquire the lock (only a read)
Result: only one invalidation per lock release (O(P) interconnect traffic)

 CMU 15-418/618, Spring 2017

Array-based lock
Each processor spins on a different memory address
Utilizes atomic operation to assign address on attempt to acquire
struct	lock	{	
			padded_int	status[P];				//	padded	to	keep	off	same	cache	line	
			int	head;	
};	

int	my_element;	

void	Lock(lock*	l)	{	
		my_element	=	atomic_circ_increment(&l->head);				//	assume	circular	increment	
		while	(l->status[my_element]	==	1);	
}	

void	unlock(lock*	l)	{	
		l->status[my_element]	=	1;	
		l->status[circ_next(my_element)]	=	0;												//	next()	gives	next	index	
}

O(1) interconnect traffic per release, but lock requires space linear in P
Also, the atomic circular increment is a more complex operation (higher overhead)

 CMU 15-418/618, Spring 2017

Additional atomic operations

 CMU 15-418/618, Spring 2017

Recall CUDA atomic operations
int			atomicAdd(int*	address,	int	val);	

float	atomicAdd(float*	address,	float	val);	

int			atomicSub(int*	address,	int	val);	

int			atomicExch(int*	address,	int	val);	

float	atomicExch(float*	address,	float	val);	

int			atomicMin(int*	address,	int	val);	

int			atomicMax(int*	address,	int	val);	

unsigned	int	atomicInc(unsigned	int*	address,	unsigned	int	val);	

unsigned	int	atomicDec(unsigned	int*	address,	unsigned	int	val);	

int			atomicCAS(int*	address,	int	compare,	int	val);	

int			atomicAnd(int*	address,	int	val);		//	bitwise	

int			atomicOr(int*	address,	int	val);			//	bitwise	

int			atomicXor(int*	address,	int	val);		//	bitwise	

(omitting additional 64 bit and unsigned int versions)

 CMU 15-418/618, Spring 2017

Implementing atomic fetch-and-op

Exercise: how can you build an atomic fetch+op out of atomicCAS()?
Example: atomic_min()

//	atomicCAS:	
//	atomic	compare	and	swap	performs	the	following	logic	atomically		
int	atomicCAS(int*	addr,	int	compare,	int	val)	{	
			int	old	=	*addr;	
			*addr	=	(old	==	compare)	?	val	:	old;	
			return	old;	
}

int	atomic_min(int*	addr,	int	x)	{	
			int	old	=	*addr;	
			int	new	=	min(old,	x);	
			while	(atomicCAS(addr,	old,	new)	!=	old)	{	
					old	=	*addr;	
					new	=	min(old,	x);	
			}	
}

What about these operations?
int		atomic_increment(int*	addr,	int	x);			//	for	signed	values	of	x	
void	lock(int*	addr);

 CMU 15-418/618, Spring 2017

Load-linked, store conditional (LL/SC)

▪ Pair of corresponding instructions (not a single atomic
instruction like compare-and-swap)
- load_linked(x): load value from address

- store_conditional(x, value): store value to x, if x hasn’t been written to since
corresponding LL

▪ Corresponding ARM instructions: LDREX and STREX

▪ How might LL/SC be implemented on a cache coherent
processor?

 CMU 15-418/618, Spring 2017

C++ 11 atomic<T>

atomic<int>	i;	
i++;	//	atomically	increment	i	

int	a	=	i;	
//	do	stuff	
i.compare_exchange_strong(a,	10);			//	if	i	has	same	value	as	a,	set	i	to	10	
bool	b	=	i.is_lock_free();										//	true	if	implementation	of	atomicity	
																																				//	is	lock	free

▪ Provides atomic read, write, read-modify-write of entire objects
- Atomicity may be implemented by mutex or efficiently by processor-supported atomic

instructions (if T is a basic type)

▪ Provides memory ordering semantics for operations before and after
atomic operations
- By default: sequential consistency
- See std::memory_order or more detail

▪ Will be useful if implementing the lock-free programming ideas in the next
lecture in C++

 CMU 15-418/618, Spring 2017

Implementing Barriers

 CMU 15-418/618, Spring 2017

Implementing a centralized barrier
(Barrier for P processors, based on shared counter)

Does it work? Consider:
do	stuff	...	
Barrier(b,	P);	
do	more	stuff	...	
Barrier(b,	P);

struct	Barrier_t	{	
		LOCK	lock;		
		int	counter;													//	initialize	to	0	
		int	flag;																	
};	

//	parameter	p	gives	number	of	processors	that	should	hit	the	barrier	
void	Barrier(Barrier_t*	b,	int	p)	{	
		lock(b->lock);	
		if	(b->counter	==	0)	{		
				b->flag	=	0;											//	first	thread	arriving	at	barrier	clears	flag	
		}	
		int	num_arrived	=	++(b->counter);	
		unlock(b->lock);	

		if	(num_arrived	==	p)	{		//	last	arriver	sets	flag	
				b->counter	=	0;	
				b->flag	=	1;	
		}	
		else	{	
				while	(b->flag	==	0);		//	wait	for	flag	
		}	
}

 CMU 15-418/618, Spring 2017

Correct centralized barrier
struct	Barrier_t	{	
		LOCK	lock;	
		int	arrive_counter;			//	initialize	to	0	(number	of	threads	that	have	arrived)	
		int	leave_counter;				//	initialize	to	P	(number	of	threads	that	have	left	barrier)	
		int	flag;	
};	

void	Barrier(Barrier_t*	b,	int	p)	{	
		lock(b->lock);	
		if	(b->arrive_counter	==	0)	{							//	if	first	to	arrive...	
				if	(b->leave_counter	==	P)	{						//	check	to	make	sure	no	other	threads	“still	in	barrier”	
							b->flag	=	0;																			//	first	arriving	thread	clears	flag	
				}	else	{	
						unlock(lock);	
						while	(b->leave_counter	!=	P);		//	wait	for	all	threads	to	leave	before	clearing			
						lock(lock);	
						b->flag	=	0;																				//	first	arriving	thread	clears	flag	
				}	
		}	
		int	num_arrived	=	++(b->arrive_counter);	
		unlock(b->lock);	

		if	(num_arrived	==	p)	{					//	last	arriver	sets	flag	
				b->arrive_counter	=	0;	
				b->leave_counter	=	1;	
				b->flag	=	1;	
		}	
		else	{	
				while	(b->flag	==	0);					//	wait	for	flag	
				lock(b->lock);	
				b->leave_counter++;	
				unlock(b->lock);	
		}

Main idea: wait for all processes to
leave first barrier, before clearing
flag for entry into the second

 CMU 15-418/618, Spring 2017

Centralized barrier with sense reversal
struct	Barrier_t	{	
		LOCK	lock;	
		int		counter;															//	initialize	to	0	
		int		flag;																		//	initialize	to	0	
};	

int	private_sense	=	0;								//	private	per	processor.	Main	idea:	processors	wait	
																														//	for	flag	to	be	equal	to	private_sense	

void	Barrier(Barrier_t*	b,	int	p)	{	
		private_sense	=	(private_sense	==	0)	?	1	:	0;	
		lock(b->lock);	
		int	num_arrived	=	++(b->counter);	
		if	(b->counter	==	p)	{						//	last	arriver	sets	flag	
				unlock(b->lock);	
				b->counter	=	0;	
				b->flag	=	private_sense;	
		}	
		else	{	
				unlock(b->lock);	
				while	(b.flag	!=	private_sense);		//	wait	for	flag	
		}	

Sense reversal optimization results in one spin instead of two

 CMU 15-418/618, Spring 2017

Centralized barrier: traffic
▪ O(P) traffic on interconnect per barrier:

- All threads: 2P write transactions to obtain barrier lock and update counter
(O(P) traffic assuming lock acquisition is implemented in O(1) manner)

- Last thread: 2 write transactions to write to the flag and reset the counter
(O(P) traffic since there are many sharers of the flag)

- P-1 transactions to read updated flag

▪ But there is still serialization on a single shared lock
- So span (latency) of entire operation is O(P)

- Can we do better?

 CMU 15-418/618, Spring 2017

Combining tree implementation of barrier

▪ Combining trees make better use of parallelism in more complex interconnect topologies
- lg(P) span (latency)

▪ Barrier acquire: when processor arrives at barrier, performs increment of parent counter
- Process recurses to root

▪ Barrier release: beginning from root, notify children of release

Centralized Barrier Combining Tree Barrier

High contention!
(e.g., single barrier
lock and counter)

 CMU 15-418/618, Spring 2017

Coming up…
▪ Imagine you have a shared variable for which contention is low.

So it is unlikely that two processors will enter the critical section
at the same time?

▪ You could hope for the best, and avoid the overhead of taking the
lock since it is likely that mechanisms for ensuring mutual
exclusion are not needed for correctness
- Take a “optimize-for-the-common-case” attitude

▪ What happens if you take this approach and you’re wrong: in the
middle of the critical region, another process enters the same
region?

 CMU 15-418/618, Spring 2017

Preview: transactional memory
atomic	

{			//	begin	transaction	

			perform	atomic	computation	here	...	

}			//	end	transaction

Instead of ensuring mutual exclusion via locks, system will proceed as if no
synchronization was necessary. (it speculates!)

System provides hardware/software support for “rolling back” all loads and
stores in the critical region if it detects (at run-time) that another thread has
entered same region at the same time.

