
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2017

Lecture 17:

Fine-grained Synchronization &
Lock-free Programming

 CMU 15-418/618, Spring 2017

Tunes

Estelle
American Boy

(Shine)

“I nailed my Google interview question on fine-grained locking, so I got to
request a bunch of Google US sites to visit after I received my offer.”

- Estelle Swaray

 CMU 15-418/618, Spring 2017

Course roadmap
▪ Spring Break (partying)

▪ Last time: implementing locks and atomic operations (and the implications of their
implementation to interconnect traffic)

▪ Today: concurrent data structures

- Fine-grained use of locks

- Lock-free programming: ensuring race-free programs without locks

▪ Next time: higher level synchronization via transactional memory

▪ Next, next time: onto something new… heterogeneity and hardware specialization

…

▪ Carnival (more partying)

 CMU 15-418/618, Spring 2017

Warm up (and review)
//	atomicCAS:	
//	atomic	compare	and	swap	performs	the	following	logic	atomically		
int	atomicCAS(int*	addr,	int	compare,	int	val)	{	
			int	old	=	*addr;	
			*addr	=	(old	==	compare)	?	val	:	old;	
			return	old;	
}

Let’s build a lock using compare and swap:

typedef	int	lock;	

void	lock(Lock*	l)	{	
		while	(atomicCAS(l,	0,	1)	==	1);	
}	

void	unlock(Lock*	l)	{	
		*l	=	0;	
}

The following is potentially more
efficient under contention: Why?
void	lock(Lock*	l)	{	
		while	(1)	{	
					while(*l	==	1);	
					if	(atomicCAS(l,	0,	1)	==	0)	
								return;	
		}	
}

 CMU 15-418/618, Spring 2017

Example: a sorted linked list
struct	Node	{	
			int	value;	
			Node*	next;	
};

struct	List	{	
		Node*	head;	
};

void	insert(List*	list,	int	value)	{	

			Node*	n	=	new	Node;	
			n->value	=	value;	

			//	assume	case	of	inserting	before	head	of	
			//	of	list	is	handled	here	(to	keep	slide	simple)	

			Node*	prev	=	list->head;	
			Node*	cur	=	list->head->next;	

			while	(cur)	{	
					if	(cur->value	>	value)	
							break;	
		
					prev	=	cur;	
					cur	=	cur->next;	
			}	

			n->next	=	cur;		
			prev->next	=	n;	
}

void	delete(List*	list,	int	value)	{	

			//	assume	case	of	deleting	first	node	in	list	
			//	is	handled	here	(to	keep	slide	simple)	

			Node*	prev	=	list->head;	
			Node*	cur	=	list->head->next;	

			while	(cur)	{	
					if	(cur->value	==	value)	{	
							prev->next	=	cur->next;	
							delete	cur;	
							return;	
					}	

					prev	=	cur;	
					cur	=	cur->next;	
			}	
}

What can go wrong if multiple threads
operate on the linked list simultaneously?

 CMU 15-418/618, Spring 2017

Example: simultaneous insertion
Thread 1 attempts to insert 6
Thread 2 attempts to insert 7

3 5 10 11 18

Thread 1:

3 5 10 11 18

prev cur

6

 CMU 15-418/618, Spring 2017

Example: simultaneous insertion
Thread 1 attempts to insert 6
Thread 2 attempts to insert 7

Thread 1:

3 5 10 11 18

prev cur

6

Thread 2:

3 5 10 11 18

prev cur

7

Thread 1 and thread 2 both compute same prev and cur.
Result: one of the insertions gets lost!

Result: (assuming thread 1 updates prev->next before thread 2)

3 5 10 11 18

7

 CMU 15-418/618, Spring 2017

Example: simultaneous insertion/deletion
Thread 1 attempts to insert 6
Thread 2 attempts to delete 10

Thread 1:

3 5 10 11 18

prev cur

6

Thread 2:

3 5 10 11 18

prev cur

Possible result:

3 5 10

6

 CMU 15-418/618, Spring 2017

Solution 1: protect the list with a single lock

void	insert(List*	list,	int	value)	{	

			Node*	n	=	new	Node;	
			n->value	=	value;	

			lock(list->lock);	

			//	assume	case	of	inserting	before	head	of	
			//	of	list	is	handled	here	(to	keep	slide	simple)	

			Node*	prev	=	list->head;	
			Node*	cur	=	list->head->next;	

			while	(cur)	{	
					if	(cur->value	>	value)	
							break;	

					prev	=	cur;	
					cur	=	cur->next;	
			}	
			n->next	=	cur;	
			prev->next	=	n;	
			unlock(list->lock);	
}

void	delete(List*	list,	int	value)	{	

			lock(list->lock);	

			//	assume	case	of	deleting	first	element	is	
			//	handled	here	(to	keep	slide	simple)	

			Node*	prev	=	list->head;	
			Node*	cur	=	list->head->next;	

			while	(cur)	{	
					if	(cur->value	==	value)	{	
							prev->next	=	cur->next;	
							delete	cur;	
							unlock(list->lock);	
							return;	
					}	

					prev	=	cur;	
					cur	=	cur->next;	
			}	
			unlock(list->lock);	
}

struct	Node	{	
			int	value;	
			Node*	next;	
};

struct	List	{	
		Node*	head;	
		Lock		lock;	
};

Per-list lock

 CMU 15-418/618, Spring 2017

Single global lock per data structure

▪ Good:
- It is relatively simple to implement correct mutual

exclusion for data structure operations (we just did it!)

▪ Bad:
- Operations on the data structure are serialized
- May limit parallel application performance

 CMU 15-418/618, Spring 2017

Challenge: who can do better?
struct	Node	{	
			int	value;	
			Node*	next;	
};

struct	List	{	
		Node*	head;	
};

3 5 10 11 18

void	insert(List*	list,	int	value)	{	

			Node*	n	=	new	Node;	
			n->value	=	value;	

			//	assume	case	of	inserting	before	head	of	
			//	of	list	is	handled	here	(to	keep	slide	simple)	

			Node*	prev	=	list->head;	
			Node*	cur	=	list->head->next;	

			while	(cur)	{	
					if	(cur->value	>	value)	
							break;	
		
					prev	=	cur;	
					cur	=	cur->next;	
			}	

			prev->next	=	n;	
			n->next	=	cur;	
}

void	delete(List*	list,	int	value)	{	

			//	assume	case	of	deleting	first	element	is	
			//	handled	here	(to	keep	slide	simple)	

			Node*	prev	=	list->head;	
			Node*	cur	=	list->head->next;	

			while	(cur)	{	
					if	(cur->value	==	value)	{	
							prev->next	=	cur->next;	
							delete	cur;	
							return;	
					}	

					prev	=	cur;	
					cur	=	cur->next;	
			}	
}

 CMU 15-418/618, Spring 2017

Hand-over-hand traversal

Credit: (Hal Boedeker, Orlanda Sentinel) American Ninja Warrior

 CMU 15-418/618, Spring 2017

T0T0T0T0

Solution 2: “hand-over-hand” locking

3 5 10 11 18

Thread 0: delete(11)

T0 prev T0 cur

 CMU 15-418/618, Spring 2017

T0T1T1

3 5 10 18

T0

11

Thread 0: delete(11)
Thread 1: delete(10)

T0 prev T0 cur

Solution 2: “hand-over-hand” locking

 CMU 15-418/618, Spring 2017

T1T1

3 5 10 18

Thread 0: delete(11)
Thread 1: delete(10)

Solution 2: “hand-over-hand” locking

 CMU 15-418/618, Spring 2017

T1

3 5 18

Thread 0: delete(11)
Thread 1: delete(10)

Solution 2: “hand-over-hand” locking

 CMU 15-418/618, Spring 2017

Solution 2: fine-grained locking
struct	Node	{	
			int	value;	
			Node*	next;	
			Lock*	lock;	
};

struct	List	{	
		Node*	head;	
		Lock*	lock;	
};

void	insert(List*	list,	int	value)	{	

			Node*	n	=	new	Node;	
			n->value	=	value;	

			//	assume	case	of	insert	before	head	handled	
			//	here	(to	keep	slide	simple)	

			Node*	prev,	*cur;	

			lock(list->lock);	
			prev	=	list->head;	
			cur	=	list->head->next;	
			
			lock(prev->lock);	
			unlock(list->lock);		
			if	(cur)	lock(cur->lock);	
		
			while	(cur)	{	
					if	(cur->value	>	value)	
								break;	
						
					Node*	old_prev	=	prev;	
					prev	=	cur;	
					cur	=	cur->next;	
					unlock(old_prev->lock);	
					if	(cur)	lock(cur->lock);	
			}	

			n->next	=	cur;		
			prev->next	=	n;	

			unlock(prev->lock);	
			if	(cur)	unlock(cur->lock);	
}

void	delete(List*	list,	int	value)	{	

			//	assume	case	of	delete	head	handled	here	
			//	(to	keep	slide	simple)	

			Node*	prev,	*cur;	
				
			lock(list->lock);	
			prev	=	list->head;	
			cur	=	list->head->next;	

			lock(prev->lock);	
			unlock(list->lock);		
			if	(cur)	lock(cur->lock)	

			while	(cur)	{	
					if	(cur->value	==	value)	{	
							prev->next	=	cur->next;	
							unlock(prev->lock);	
							unlock(cur->lock);	
							delete	cur;		
							return;	
					}	

					Node*	old_prev	=	prev;	
					prev	=	cur;	
					cur	=	cur->next;	
					unlock(old_prev->lock);	
					if	(cur)	lock(cur->lock);	
			}	
			unlock(prev->lock);	
}

Challenge to students: there is way to further
improve the implementation of insert(). What is it?

 CMU 15-418/618, Spring 2017

Fine-grained locking
▪ Goal: enable parallelism in data structure operations

- Reduces contention for global data structure lock
- In previous linked-list example: a single monolithic lock is overly conservative

(operations on different parts of the linked list can proceed in parallel)

▪ Challenge: tricky to ensure correctness
- Determining when mutual exclusion is required
- Deadlock? (Self-check: in the linked-list example from the prior slides, why do you

immediately that the code is deadlock free?)
- Livelock?

▪ Costs?
- Overhead of taking a lock each traversal step (extra instructions + traversal now

involves memory writes)
- Extra storage cost (a lock per node)
- What is a middle-ground solution that trades off some parallelism for reduced

overhead? (hint: similar issue to selection of task granularity)

 CMU 15-418/618, Spring 2017

Practice exercise
▪ Implement a fine-grained locking implementation of a

binary search tree supporting insert and delete

struct	Tree	{	
		Node*	root;	
};	

struct	Node	{	
			int	value;	
			Node*	left;	
			Node*	right;	
};	

void	insert(Tree*	tree,	int	value);	
void	delete(Tree*	tree,	int	value);	

 CMU 15-418/618, Spring 2017

Lock-free data structures

 CMU 15-418/618, Spring 2017

Blocking algorithms/data structures
▪ A blocking algorithm allows one thread to prevent other

threads from completing operations on a shared data structure
indefinitely

▪ Example:
- Thread 0 takes a lock on a node in our linked list
- Thread 0 is swapped out by the OS, or crashes, or is just really slow (takes a page fault), etc.
- Now, no other threads can complete operations on the data structure (although thread 0 is

not actively making progress modifying it)

▪ An algorithm that uses locks is blocking regardless of whether
the lock implementation uses spinning or pre-emption

 CMU 15-418/618, Spring 2017

Lock-free algorithms
▪ Non-blocking algorithms are lock-free if some thread is

guaranteed to make progress (“systemwide progress”)
- In lock-free case, it is not possible to preempt one of the threads at an

inopportune time and prevent progress by rest of system

- Note: this definition does not prevent starvation of any one thread

 CMU 15-418/618, Spring 2017

Single reader, single writer bounded queue *
struct	Queue	{		
		int	data[N];	
		int	head;			//	head	of	queue	
		int	tail;			//	next	free	element	
};	

void	init(Queue*	q)	{	
			q->head	=	q->tail	=	0;	
}

//	return	false	if	queue	is	full	
bool	push(Queue*	q,	int	value)	{	

			//	queue	is	full	if	tail	is	element	before	head			
			if	(q->tail	==	MOD_N(q->head	-	1))	
					return	false;	

			q.data[q->tail]	=	value;	
			q->tail	=	MOD_N(q->tail	+	1);	
			return	true;	
}	

//	returns	false	if	queue	is	empty	
bool	pop(Queue*	q,	int*	value)	{	

			//	if	not	empty	
			if	(q->head	!=	q->tail)	{	
					*value	=	q->data[q->head];	
					q->head	=	MOD_N(q->head	+	1);		

			return	true;	
		}	
		return	false;	
}

▪ Only two threads (one producer, one consumer) accessing queue at the same time
▪ Threads never synchronize or wait on each other

- When queue is empty (pop fails), when it is full (push fails)

* Assume a sequentially consistent memory system for now
 (or the presence of appropriate memory fences, or C++ 11 atomic<>)

 CMU 15-418/618, Spring 2017

Single reader, single writer unbounded queue *
struct	Node	{	
		Node*	next;	
		int			value;	
};	

struct	Queue	{		
		Node*	head;		
		Node*	tail;	
		Node*	reclaim;	
};	

void	init(Queue*	q)	{	
		q->head	=	q->tail	=	q->reclaim	=	new	Node;	
}

void	push(Queue*	q,	int	value)	{	
			
			Node*	n	=	new	Node;	
			n->next	=	NULL;	
			n->value	=	value;	

			q->tail->next	=	n;	
			q->tail	=	q->tail->next;	

			while	(q->reclaim	!=	q->head)	{	
				Node*	tmp	=	q->reclaim;	
				q->reclaim	=	q->reclaim->next;	
				delete	tmp;	

			}	
}	

//	returns	false	if	queue	is	empty	
bool	pop(Queue*	q,	int*	value)	{	

			if	(q->head	!=	q->tail)	{	
					*value	=	q->head->next->value;	
					q->head	=	q->head->next;		

			return	true;	
			}	
			return	false;	
}

▪ Tail points to last element added (if non-empty)
▪ Head points to element BEFORE head of queue
▪ Allocation and deletion performed by the same thread (producer)

Source: Dr. Dobbs Journal

* Assume a sequentially consistent memory system for now
 (or the presence of appropriate memory fences, or C++ 11 atomic<>)

 CMU 15-418/618, Spring 2017

Single reader, single writer unbounded queue
head, tail, reclaim

tailhead, reclaim

3 10

push 3, push 10

pop (returns 3)
tailreclaim

3 10
head

pop (returns 10)
tail, headreclaim

3 10

pop (returns false... queue empty)

tail, headreclaim

3 10

reclaim, head

10

push 5 (triggers reclaim)

5
tail

 CMU 15-418/618, Spring 2017

Lock-free stack (first try)
struct	Node	{	
		Node*	next;	
		int			value;	
};	

struct	Stack	{		
		Node*	top;	
};	

void	init(Stack*	s)	{	
		s->top	=	NULL;	
}	

void	push(Stack*	s,	Node*	n)	{	
		while	(1)	{	
				Node*	old_top	=	s->top;	
				n->next	=	old_top;	
				if	(compare_and_swap(&s->top,	old_top,	n)	==	old_top)	
						return;	
		}	
}	

Node*	pop(Stack*	s)	{	
		while	(1)	{	
				Node*	old_top	=	s->top;	
				if	(old_top	==	NULL)	
						return	NULL;	
				Node*	new_top	=	old_top->next;	
				if	(compare_and_swap(&s->top,	old_top,	new_top)	==	old_top)	
						return	old_top;	
		}	
}

Main idea: as long as no other thread has modified the stack, a thread’s modification can proceed.

Note difference from fine-grained locking: In fine-grained locking, the implementation locked a part
of a data-structure. Here, threads do not hold lock on data-structure at all.
* Assume a sequentially consistent memory system for now
 (or the presence of appropriate memory fences, or C++ 11 atomic<>)

 CMU 15-418/618, Spring 2017

The ABA problem
Thread 0 Thread 1

A B C

top

begin pop() (local variable: old_top = A, new_top = B)

B C

top

begin pop() (local variable old_top == A)
complete pop() (returns A)

modify node A: e.g., set value = 42
begin push(A)
complete push(A)

begin push(D)
complete push(D)

D B C

top

D B CA

top

CAS succeeds (sets top to B!)
complete pop() (returns A)

B C

toptime
Stack structure is corrupted! (lost D)

Careful: On this slide A, B, C, and D are
stack node addresses, not value of node!

 CMU 15-418/618, Spring 2017

Lock-free stack using counter for ABA soln
struct	Node	{	
		Node*	next;	
		int			value;	
};	

struct	Stack	{		
		Node*	top;	
		int			pop_count;	
};	

void	init(Stack*	s)	{	
		s->top	=	NULL;	
}	

void	push(Stack*	s,	Node*	n)	{	
		while	(1)	{	
				Node*	old_top	=	s->top;	
				n->next	=	old_top;	
				if	(compare_and_swap(&s->top,	old_top,	n)	==	old_top)	
						return;	
		}	
}	

Node*	pop(Stack*	s)	{	
		while	(1)	{	
				int	pop_count	=	s->pop_count;	
				Node*	top	=	s->top;	
				if	(top	==	NULL)	
						return	NULL;	
				Node*	new_top	=	top->next;	
				if	(double_compare_and_swap(&s->top,							top,							new_top,	
																																&s->pop_count,	pop_count,	pop_count+1))	
						return	top;	
		}	
}

▪ Maintain counter of pop operations
▪ Requires machine to support “double compare and swap” (DCAS) or doubleword CAS
▪ Could also solve ABA problem with careful node allocation and/or element reuse policies

test to see if either have changed (assume
function returns true if no changes)

 CMU 15-418/618, Spring 2017

Compare and swap on x86
▪ x86 supports a “double-wide” compare-and-swap instruction

- Not quite the “double compare-and-swap” used in the code on the previous slide

- But could simply ensure the stack’s count and top fields are contiguous in
memory to use the 64-bit wide single compare-and-swap instruction below.

▪ cmpxchg8b
- “compare and exchange eight bytes”

- Can be used for compare-and-swap of two 32-bit values

▪ cmpxchg16b
- “compare and exchange 16 bytes”

- Can be used for compare-and-swap of two 64-bit values

 CMU 15-418/618, Spring 2017

Another problem: referencing freed memory
struct	Node	{	
		Node*	next;	
		int			value;	
};	

struct	Stack	{		
		Node*	top;	
		int			pop_count;	
};	

void	init(Stack*	s)	{	
		s->top	=	NULL;	
}	

void	push(Stack*	s,	int	value)	{	
		Node*	n	=	new	Node;	
		n->value	=	value;	
		while	(1)	{	
				Node*	old_top	=	s->top;	
				n->next	=	old_top;	
				if	(compare_and_swap(&s->top,	old_top,	n)	==	old_top)	
						return;	
		}	
}	

int	pop(Stack*	s)	{	
		while	(1)	{	
				Stack	old;	
				old.pop_count	=	s->pop_count;	
				old.top	=	s->top;	

				if	(old.top	==	NULL)	
						return	NULL;	
		
				Stack	new_stack;	
				new_stack.top	=	old.top->next;	
				new_stack.pop_count	=	old.pop_count+1;		
						
				if	(doubleword_compare_and_swap(s,	old,	new_stack))	
						int	value	=	old.top->value;	
						delete	old.top;	
						return	value;	
				}	
		}	
}

old top might have been freed at this point
(by some other thread that popped it)

 CMU 15-418/618, Spring 2017

Hazard pointer: avoid freeing a node until it’s known
that all other threads do not hold reference to it

void	init(Stack*	s)	{	
		s->top	=	NULL;	
}	

void	push(Stack*	s,	int	value)	{	
		Node*	n	=	new	Node;	
		n->value	=	value;	
		while	(1)	{	
				Node*	old_top	=	s->top;	
				n->next	=	old_top;	
				if	(compare_and_swap(&s->top,	old_top,	n)	==	old_top)	
						return;	
		}	
}	

int	pop(Stack*	s)	{	
		while	(1)	{	
				Stack	old;	
				old.pop_count	=	s->pop_count;	
				old.top	=	hazard	=	s->top;	

				if	(old.top	==	NULL)	{	
						return	NULL;	
				}	
		
				Stack	new_stack;	
				new_stack.top	=	old.top->next;	
				new_stack.pop_count	=	old.pop_count+1;		
						
				if	(doubleword_compare_and_swap(s,	old,	new_stack))	{	
						int	value	=	old.top->value;	
						retire(old.top);	
						return	value;	
				}	
				hazard	=	NULL;	
		}	
}

//	delete	nodes	if	possible
void	retire(Node*	ptr)	{	
		push(retireList,	ptr);	
		retireListSize++;	

		if	(retireListSize	>	THRESHOLD)	
					for	(each	node	n	in	retireList)	{	
								if	(n	not	pointed	to	by	any	
												thread’s	hazard	pointer)	{	
											remove	n	from	list	
											delete	n;	
								}	
					}	
}

struct	Node	{	
		Node*	next;	
		int	value;	
};	

struct	Stack	{		
		Node*	top;	
		int	pop_count;	
};	

//	per	thread	ptr	(node	that	cannot		
//	be	deleted	since	the	thread	is		
//	accessing	it)	
Node*	hazard;	

//	per-thread	list	of	nodes	this		
//	thread	must	delete	
Node*	retireList;	
int			retireListSize;

 CMU 15-418/618, Spring 2017

Lock-free linked list insertion *
struct	Node	{	
			int	value;	
			Node*	next;	
};

struct	List	{	
		Node*	head;	
};

//	insert	new	node	after	specified	node	
void	insert_after(List*	list,	Node*	after,	int	value)	{	

			Node*	n	=	new	Node;	
			n->value	=	value;	

			//	assume	case	of	insert	into	empty	list	handled	
			//	here	(keep	code	on	slide	simple	for	class	discussion)	

			Node*	prev	=	list->head;	

			while	(prev->next)	{	
					if	(prev	==	after)	{	
							while	(1)	{	
									Node*	old_next	=	prev->next;	
									n->next	=	old_next;		
									if	(compare_and_swap(&prev->next,	old_next,	n)	==	old_next)	
												return;	
							}	
					}	

					prev	=	prev->next;	
			}	
}

Compared to fine-grained
locking implementation:

No overhead of taking locks
No per-node storage overhead

* For simplicity, this slide assumes the *only* operation on the list is insert

 CMU 15-418/618, Spring 2017

Lock-free linked list deletion
Supporting lock-free deletion significantly complicates data-structure

Consider case where B is deleted simultaneously with successful insertion of E after B.

B now points to E, but B is not in the list!

For the curious:

- Harris 2001. A Pragmatic Implementation of Non-blocking Linked-Lists
- Fomitchev 2004. Lock-free linked lists and skip lists

A B C D

E

X
CAS succeeds
on A->next

CAS succeeds
on B->next

 CMU 15-418/618, Spring 2017

Lock-free vs. locks performance comparison

Queue

Lock-free algorithm run time normalized to run time of using pthread mutex locks

Source: Hunt 2011. Characterizing the Performance and Energy
Efficiency of Lock-Free Data Structures

Linked List

Dequeue

lf = “lock free”
fg = “fine grained lock”

 CMU 15-418/618, Spring 2017

In practice: why lock free data-structures?
▪ When optimizing parallel programs in this class you often assume

that only your program is using the machine
- Because you care about performance
- Typical assumption in scientific computing, graphics, machine learning, data analytics, etc.

▪ In these cases, well-written code with locks can sometimes be as fast
(or faster) than lock-free code

▪ But there are situations where code with locks can suffer from tricky
performance problems
- Situations where a program features many threads (e.g., database, webserver) and page

faults, pre-emption, etc. can occur while thread is in a critical section
- Creates problems like priority inversion, convoying, crashing in critical section, etc. that are

often discussed in OS classes

 CMU 15-418/618, Spring 2017

Summary
▪ Use fine-grained locking to reduce contention (maximize parallelism)

in operations on shared data structures
- But fine-granularity can increase code complexity (errors) and increase execution overhead

▪ Lock-free data structures: non-blocking solution to avoid overheads
due to locks
- But can be tricky to implement (ensuring correctness in a lock-free setting has its own

overheads)
- Still requires appropriate memory fences on modern relaxed consistency hardware

▪ Note: a lock-free design does not eliminate contention
- Compare-and-swap can fail under heavy contention, requiring spins

 CMU 15-418/618, Spring 2017

More reading
▪ Michael and Scott 1996. Simple, Fast and Practical Non-Blocking and Blocking Concurrent

Queue Algorithms

- Multiple reader/writer lock-free queue

▪ Harris 2001. A Pragmatic Implementation of Non-Blocking Linked-Lists

▪ Many good blog posts and articles on the web:

- http://www.drdobbs.com/cpp/lock-free-code-a-false-sense-of-security/210600279

- http://developers.memsql.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

▪ Often students like to implement lock-free data structures for projects

- Linked list, skip-list based maps (Java’s ConcurrentSkipListMap), list-based sets, etc.

- I recommend using CMU Ph.D. student Michael Sullivan’s RMC system to implement
these projects.

http://developers.memsql.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

