Lecture 24:

Parallel Deep Network Training

Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2017

Tunes

Lamb Softly (Fear of Fours)

"It definitely wasn't a love song. It was just how we felt after we jumped on the bandwagon of not hand-engineering features."

- Lou Rhodes

How would you describe this professor?

Easy?
Mean?
Boring?
Nerdy?

Professor classification task

Classifies professors as easy, mean, boring, or nerdy based on their appearance.

Professor classification network

Classifies professors as easy, mean, boring, or nerdy based on their appearance.

Recall: 10's-100's of millions of parameters

Professor classification network

Training data (ground truth answers)

[label omitted]

[label omitted]

Nerdy

[label omitted] [label omitted]

[label omitted]

[label omitted]

[label omitted]

Nerdy

[label omitted]

[label omitted]

Nerdy

[label omitted]

[label omitted]

[label omitted]

Nerdy

[label omitted]

[label omitted]

[label omitted]

Nerdy

Professor classification network

New image of Kayvon (not in training set)

Ground truth

(what the answer should be)

Easy: 0.0

Mean: 0.0

Boring: 0.0

Nerdy: 1.0

Error (loss)

Ground truth:

(what the answer should be)

Easy: 0.0

Mean: 0.0

Boring: 0.0

Nerdy: 1.0

Network output: *

Easy: 0.26

Mean: 0.08

Boring: 0.14

Nerdy: 0.52

Common example: softmax loss:

$$L = -log\left(\frac{e^{f_c}}{\sum_{j}e^{f_j}}\right)$$
 Output of network for correct category Output of network for all categories

^{*} In practice a network using a softmax classifier outputs unnormalized, log probabilities (f_j), but I'm showing a probability distribution above for clarity

Training

Goal of training: learning good values of network parameters so that the network outputs the correct classification result for any input image

Idea: minimize loss for all the training examples (for which the correct answer is known)

$$L = \sum_i L_i$$
 (total loss for entire training set is sum of losses L_i for each training example x_i)

Intuition: if the network gets the answer correct for a wide range of training examples, then hopefully it has learned parameter values that yield the correct answer for future images as well.

Intuition: gradient descent

Say you had a function f that contained hidden parameters p_1 and p_2 : $f(x_i)$

And for some input x_i , your training data says the function should output 0.

But for the current values of p_1 and p_2 , it currently outputs 10.

$$f(x_i, p_1, p_2) = 10$$

And say I also gave you expressions for the derivative of f with respect to p_1 and p_2 so you could compute their value at x_i .

$$\frac{df}{dp_1} = 2 \quad \frac{df}{dp_2} = -5 \qquad \nabla f = [2, -5]$$

How might you adjust the values p_1 and p_2 to reduce the error for this training example?

Basic gradient descent

```
while (loss too high):
    for each item x_i in training set:
        grad += evaluate_loss_gradient(f, params, loss_func, x_i)
    params += -grad * step_size;
```

Mini-batch stochastic gradient descent (mini-batch SGD): choose a random (small) subset of the training examples to compute gradient in each iteration of the while loop

How do we compute dLoss/dp for a deep neural network with millions of parameters?

Derivatives using the chain rule

$$f(x, y, z) = (x + y)z = az$$

Where:
$$a = x + y$$

$$\frac{df}{da} = z \quad \frac{da}{dx} = 1 \quad \frac{da}{dy} = 1$$

So, by the derivative chain rule:

$$\frac{df}{dx} = \frac{df}{da}\frac{da}{dx} = z$$

Red = output of node
Blue = df/dnode

Backpropagation

Red = **output of node**

Blue = df/dnode

Recall:
$$\frac{df}{dx} = \frac{df}{dg} \frac{dg}{dx}$$

$$g(x,y) = x + y$$

$$\frac{dg}{dx} = 1, \ \frac{dg}{dy} = 1$$

$$g(x,y) = \max(x,y)$$

$$g(x,y) = \max(x,y)$$
 $\frac{dg}{dx} =$ 1, if x > y 0, otherwise

$$g(x,y) = xy$$

$$\frac{dg}{dx} = y, \ \frac{dg}{dy} = x$$

Back-propagating through single unit

Observe: output of prior layer must be retained in order to compute weight gradients for this unit during backprop.

Multiple uses of an input variable

$$g(x,y) = (x + y) + x * x = a + b$$

$$\frac{da}{dx} = 1, \frac{db}{dx} = 2x$$

$$\frac{dg}{dx} = \frac{dg}{da}\frac{da}{dx} + \frac{dg}{db}\frac{db}{dx} = 2x + 1$$

Sum gradients from each use of variable:

Here:

$$\frac{df}{dx} = \frac{df}{dg} \frac{dg}{dx}$$

$$= 10 \frac{dg}{dx}$$

$$= 10(2x + 1)$$

$$= 10(10 + 1) = 110$$

Implication: backpropagation through all units in a convolutional layer adds gradients computed from each unit to the overall gradient for the shared weights

Back-propagation: matrix form

Therefore:

$$\frac{dL}{d\mathbf{w}} = \mathbf{X}^T \frac{dL}{d\mathbf{y}}$$

Backpropagation through the entire professor classification network

For each training example x_i in mini-batch:

Perform forward evaluation to compute loss for x_i

Compute gradient of loss w.r.t. final layer's outputs

Backpropagate gradient to compute gradient of loss w.r.t. all network parameters

Accumulate gradients (over all images in batch)

Update all parameter values: w_new = w_old - step_size * grad

Recall from last class: VGG memory footprint

output size

Calculations assume 32-bit values (image batch size = 1)

	weights m	em:	(per image)	(mem)
input: 224 x 224 RGB image			224x224x3	150K
conv: (3x3x3) x 64	6.5 KB		224x224x64	12.3 MB
conv: (3x3x64) x 64	144 KB		224x224x64	12.3 MB
maxpool			112x112x64	3.1 MB
conv: (3x3x64) x 128	228 KB		112x112x128	6.2 MB
conv: (3x3x128) x 128	576 KB		112x112x128	6.2 MB
maxpool			56x56x128	1.5 MB
conv: (3x3x128) x 256	1.1 MB		56x56x256	3.1 MB
conv: (3x3x256) x 256	2.3 MB		56x56x256	3.1 MB
conv: (3x3x256) x 256	2.3 MB		56x56x256	3.1 MB
maxpool			28x28x256	766 KB
conv: (3x3x256) x 512	4.5 MB		28x28x512	1.5 MB
conv: (3x3x512) x 512	9 MB		28x28x512	1.5 MB
conv: (3x3x512) x 512	9 MB		28x28x512	1.5 MB
maxpool			14x14x512	383 KB
conv: (3x3x512) x 512	9 MB		14x14x512	383 KB
conv: (3x3x512) x 512	9 MB		14x14x512	383 KB
conv: (3x3x512) x 512	9 MB		14x14x512	383 KB
maxpool		Many weights in fully-	7x7x512	98 KB
fully-connected 4096	392 MB	connected players	4096	16 KB
fully-connected 4096	64 MB		4096	16 KB
fully-connected 1000	15.6 MB		1000	4 KB
soft-max			1000	4 KB

Storing convolution layer outputs (unit "activations") can get big in early layers with large input size and many filters

Note: multiply these numbers by N for batch size of N images

Data lifetimes during network evaluation

Weights (read-only) reside in memory

After evaluating layer i, can free outputs from layer i-1

Data lifetimes during training

- Must retain outputs for all layers because they are needed to compute gradients during back-prop
- Parallel back-prop will require storage for per-weight gradients (more about this in a second)
- In practice: may also store per-weight gradient velocity (if using SGD with "momentum") or step cache in Adagrad

```
vel_new = mu * vel_old - step_size * grad
w_new = w_old + vel_new
```

VGG memory footprint

Calculations assume 32-bit values (image batch size = 1)

inputs/outputs get multiplied by minibatch size

output size

Unlike forward evaluation: 1. cannot immediately free outputs once consumed by next level of network

	weights me	(per image)	(mem)	
input: 224 x 224 RGB image			224x224x3	150K
conv: (3x3x3) x 64	6.5 KB	Must pleastons non	224x224x64	12.3 MB
conv: (3x3x64) x 64	144 KB	Must also store per- weight gradients	224x224x64	12.3 MB
maxpool		Weight gradients	112x112x64	3.1 MB
conv: (3x3x64) x 128	228 KB	Many implementations	112x112x128	6.2 MB
conv: (3x3x128) x 128	576 KB	also store gradient	112x112x128	6.2 MB
maxpool		"momentum" as well (multiply by 3)	56x56x128	1.5 MB
conv: (3x3x128) x 256	1.1 MB	(illustriply by 5)	56x56x256	3.1 MB
conv: (3x3x256) x 256	2.3 MB		56x56x256	3.1 MB
conv: (3x3x256) x 256	2.3 MB		56x56x256	3.1 MB
maxpool			28x28x256	766 KB
conv: (3x3x256) x 512	4.5 MB		28x28x512	1.5 MB
conv: (3x3x512) x 512	9 MB		28x28x512	1.5 MB
conv: (3x3x512) x 512	9 MB		28x28x512	1.5 MB
maxpool			14x14x512	383 KB
conv: (3x3x512) x 512	9 MB		14x14x512	383 KB
conv: (3x3x512) x 512	9 MB		14x14x512	383 KB
conv: (3x3x512) x 512	9 MB		14x14x512	383 KB
maxpool			7x7x512	98 KB
fully-connected 4096	392 MB		4096	16 KB
fully-connected 4096	64 MB		4096	16 KB
fully-connected 1000	15.6 MB		1000	4 KB
soft-max			1000	4 KB

SGD workload

```
while (loss too high):

At first glance, this loop is sequential (each step of "walking downhill" depends on previous)

for each item x_i in mini-batch:

grad += evaluate_loss_gradient(f, loss_func, params, x_i)

large computation with its own parallelism
(but working set may not fit on single machine)

params += -grad * step_size;

trivial data-parallel over parameters
```

DNN training workload

Huge computational expense

- Must evaluate the network (forward and backward) for millions of training images
- Must iterate for many iterations of gradient descent (100's of thousands)
- Training modern networks on big datasets takes days

Large memory footprint

- Must maintain network layer outputs from forward pass
- Additional memory to store gradients/gradient velocity for each parameter
- Recall parameters for popular VGG-16 network require ~500 MB of memory (training requires GBs of memory for academic networks)
- Scaling to larger networks requires partitioning DNN across nodes to keep DNN + intermediates in memory

Dependencies /synchronization (not embarrassingly parallel)

- Each parameter update step depends on previous
- Many units contribute to same parameter gradients (fine-scale reduction)
- Different images in mini batch contribute to same parameter gradients

Data-parallel training (across images)

```
for each item x_i in mini-batch:
    grad += evaluate_loss_gradient(f, loss_func, params, x_i)
params += -grad * step_size;
```

Consider parallelization of the outer for loop across machines in a cluster

partition mini-batch across nodes
for each item x_i in mini-batch assigned to local node:
 // just like single node training
 grad += evaluate_loss_gradient(f, loss_func, params, x_i)
barrier();
sum reduce gradients, communicate results to all nodes
barrier();
update copy of parameter values

Challenges of computing at cluster scale

- Slow communication between nodes
 - Commodity clusters do not feature high-performance interconnects (e.g., infiniband) typical of supercomputers
- Nodes with different performance (even if machines are the same)
 - Workload imbalance at barriers (sync points between nodes)

Modern solution: exploit characteristics of SGD using asynchronous execution!

Parameter server design

Parameter Server [Li OSDI14]
Google's DistBelief [Dean NIPS12]
Microsoft's Project Adam [Chilimbi OSDI14]

parameter values

Parameter Server

Training data partitioned among workers

Copy of parameters sent to workers

Workers independently compute local "subgradients"

Pool of worker nodes

local copy of parameters (v0)

local subgradients

Worker Node 0

local copy of parameters (v0)

local subgradients

Worker Node 2 local copy of parameters (v0)

local subgradients

Worker Node 1

local copy of parameters (v0)

local subgradients

Worker Node 3 parameter values (v0)

Parameter Server

Worker sends subgradient to parameter server

Pool of worker nodes

Server updates global parameter values based on subgradient

Worker Node 0

local copy of parameters (v0)

local subgradients

Worker Node 2

local copy of parameters (v0)

local subgradients

Worker Node 1

local copy of parameters (v0)

local subgradients

Worker Node 3 parameter values (v1)

Parameter Server

params += -subgrad * step_size;

Updated parameters sent to worker

Worker proceeds with another gradient computation step

Updated parameters sent to worker (again)

Worker continues with updated parameters

Summary: asynchronous parameter update

- Idea: avoid global synchronization on all parameter updates between each SGD iteration
 - Design reflects realities of cluster computing:
 - Slow interconnects
 - Unpredictable machine performance
- Solution: asynchronous (and partial) subgradient updates
- Will impact convergence of SGD
 - Node N working on iteration i may not have parameter values that result the results of the i-1 prior SGD iterations

Bottleneck?

What if there is heavy contention for parameter server?

local copy of parameters (v0)

local subgradients

Worker Node 0

local copy of parameters (v0)

local subgradients

Worker Node 2

local copy of parameters (v1)

local subgradients

Worker Node 1

local copy of parameters (v2)

local subgradients

Worker Node 3 parameter values (v2)

Parameter Server

Shard the parameter server

Node 2

Partition parameters across servers

Worker sends chunk of subgradients to owning parameter server

Node 3

(less important: also reduces cost of parameter update)

What if model parameters do not fit on one worker?

Recall high footprint of training large networks (particularly with large mini-batch sizes)

local copy of parameters (v0)

local subgradients

Worker Node 0

local copy of parameters (v0)

local subgradients

Worker Node 2

local copy of parameters (v1)

local subgradients

Worker Node 1

local copy of parameters (v2)

local subgradients

Worker Node 3 parameter values (chunk 0)

Parameter Server 0

parameter values (chunk 1)

Parameter Server 1

Model parallelism

Partition network parameters across nodes (spatial partitioning to reduce communication)

Reduce internode communication through network design:

- Use small spatial convolutions (1x1 convolutions)
- Reduce/shrink fully-connected layers

Training data-parallel and model-parallel execution

Working on subgradient computation for a single copy of the model

parameter values (chunk 0)

Parameter Server 0

parameter
 values
 (chunk 1)

Parameter Server 1

Working on subgradient computation for a single copy of the model

Using supercomputers for training?

- Fast interconnects critical for model-parallel training
 - Fine-grained communication of outputs and gradients
- Fast interconnect diminishes need for async training algorithms
 - Avoid randomness in training due to computation schedule (there remains randomness due to SGD algorithm)

OakRidge Titan Supercomputer

NVIDIA DGX-1: 8 Pascal GPUs connected via high speed NV-Link interconnect

Accelerating data-parallel training

FireCaffe [landola 16]

- Use a high-performance Cray Gemini interconnect (Titan supercomputer)
- Use combining tree for accumulating gradients (rather than a single parameter server)
- Use larger batch size (to reduce frequency of communication) and offset by increasing learning rate

	Hardware	Net	Epochs	Batch	Initial Learning	Train	Speedup	Top-1	Top-5
				size	Rate	time		Accuracy	Accuracy
Caffe	1 NVIDIA K20	GoogLeNet	64	32	0.01	21 days	1x	68.3%	88.7%
		[41]							
FireCaffe	32 NVIDIA K20s (Titan	GoogLeNet	72	1024	0.08	23.4	20x	68.3%	88.7%
(ours)	supercomputer)					hours			
FireCaffe	128 NVIDIA K20s (Titan	GoogLeNet	72	1024	0.08	10.5	47x	68.3%	88.7%
(ours)	supercomputer)					hours			

Dataset: ImageNet 1K

Result: reasonable scalability without asynchronous parameter update: for modern DNNs with fewer weights such as GoogLeNet (due to no fully connected layers)

Parallelizing mini-batch on one machine

```
for each item x_i in mini-batch:
    grad += evaluate_loss_gradient(f, loss_func, params, x_i)
params += -grad * step_size;
```

Consider parallelization of the outer for loop across cores

Good: completely independent computations (until gradient reduction)

Bad: complete duplication of parameter gradient state (100's MB per core)

Asynchronous update on one node

```
for each item x_i in mini-batch:
    grad += evaluate_loss_gradient(f, loss_func, params, x_i)
params += -grad * step_size;
```

Cores update shared set of gradients.

Skip taking locks / synchronizing across cores: perform "approximate reduction"

Summary: training large networks in parallel

- Most systems rely on asynchronous update to efficiently use clusters of commodity machines
 - Modification of SGD algorithm to meet constraints of modern parallel systems
 - Effects on convergence are problem dependent and not particularly well understood
 - Efficient use of fast interconnects may provide alternative to these methods (facilitate tightly orchestrated solutions much like supercomputing applications)
- Although modern DNN designs (with fewer weights) and efficient use of high performance interconnects (much like any parallel computing problem) enables scalability without asynchronous execution
- High-performance training of deep networks is an interesting example of constant iteration of algorithm design and parallelization strategy (a key theme of this course! recall the original grid solver example!)