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Comparing	Two	Large-Scale	Systems

⬛ Oakridge	Titan	

▪ Monolithic	
supercomputer	(3rd	
fastest	in	world)	

▪ Designed	for	compute-
intensive	applications

⬛ Google	Data	Center	

■ Servers	to	support	
millions	of	customers	

■ Designed	for	data	
collection,	storage,	and	
analysis
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• Mapping / directions 
• Language translation 
• Video streaming

Google Data Center

Oakridge Titan



Carnegie Mellon

15-418/618 4
4

Supercomputing	Landscape

Computational Intensity

D
at

a 
In

te
ns

ity

Modeling & 
 Simulation-Driven 

 Science & 
Engineering

Oakridge Titan



Carnegie Mellon

15-418/618 5
5

Supercomputer	Applications

⬛ Simulation-Based	Modeling	
▪ System	structure	+	initial	conditions	+	transition	behavior	
▪ Discretize	time	and	space	
▪ Run	simulation	to	see	what	happens	

⬛ Requirements	
▪ Model	accurately	reflects	actual	system	
▪ Simulation	faithfully	captures	model

Science Industrial 
Products

Public Health
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Titan	Hardware

⬛ Each	Node	
▪ AMD	16-core	processor	
▪ nVidia	Graphics	Processing	Unit	
▪ 38	GB	DRAM	
▪ No	disk	drive	

⬛ Overall	
▪ 7MW,	$200M

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node 18,688

•   •  •

GPU GPU GPU
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Titan	Node	Structure:	CPU

⬛ CPU	
▪ 16	cores	sharing	common	memory	

▪ Supports	multithreaded	programming	

▪ ~0.16	x	1012	floating-point	operations	per	second	(FLOPS)	peak	
performance

DRAM 
Memory
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Titan	Node	Structure:	GPU

⬛ Kepler	GPU	
▪ 14	multiprocessors	

▪ Each	with	12	groups	of	16	stream	processors	 	
▪ 14	X	12	X	16	=	2688		

▪ Single-Instruction,	Multiple-Data	parallelism	
▪ Single	instruction	controls	all	processors	in	group	

▪ 4.0	x	1012	FLOPS	peak	performance
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Titan	Programming:	Principle

⬛ Solving	Problem	Over	Grid	
▪ E.g.,	finite-element	system	

▪ Simulate	operation	over	time	

⬛ Bulk	Synchronous	Model	
▪ Partition	into	Regions	

▪ p	regions	for	p-node	machine	

▪ Map	Region	per	Processor
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Titan	Programming:	Principle	(cont)

⬛ Bulk	Synchronous	Model	
▪ Map	Region	per	Processor	

▪ Alternate	
▪ All	nodes	compute	behavior	of	

region	
– Perform	on	GPUs	

▪ All	nodes	communicate	values	at	
boundaries

P1 P2 P3 P4 P5

Communicate

Communicate

Communicate

Compute

Compute

Compute
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Bulk	Synchronous	Performance

▪ Limited	by	performance	of	slowest	
processor	

⬛ Strive	to	keep	perfectly	
balanced	
▪ Engineer	hardware	to	be	highly	
reliable	

▪ Tune	software	to	make	as	regular	
as	possible	

▪ Eliminate	“noise”	
▪ Operating	system	events	
▪ Extraneous	network	activity

P1 P2 P3 P4 P5

Communicate

Communicate

Communicate

Compute

Compute

Compute
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Titan	Programming:	Reality

⬛ System	Level	
▪ Message-Passing	Interface	(MPI)	supports	node	computation,	
synchronization	and	communication	

⬛ Node	Level	
▪ OpenMP	supports	thread-level	operation	of	node	CPU	

▪ CUDA	programming	environment	for	GPUs	
▪ Performance	degrades	quickly	if	don’t	have	perfect	balance	

among	memories	and	processors	

⬛ Result	
▪ Single	program	is	complex	combination	of	multiple	
programming	paradigms	

▪ Tend	to	optimize	for	specific	hardware	configuration
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MPI	Fault	Tolerance

⬛ Checkpoint	
▪ Periodically	store	state	of	all	processes	

▪ Significant	I/O	traffic	

⬛ Restore	
▪ When	failure	occurs	

▪ Reset	state	to	that	of	last	checkpoint	

▪ All	intervening	computation	wasted	

⬛ Performance	Scaling	
▪ Very	sensitive	to	number	of	failing	
components

Restore

Wasted 
Computation

Compute & 
Communicate

P1 P2 P3 P4 P5

Checkpoint

Compute & 
Communicate
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Supercomputer	Programming	Model

▪ Program	on	top	of	bare	hardware	

⬛ Performance	
▪ Low-level	programming	to	
maximize	node	performance	

▪ Keep	everything	globally	
synchronized	and	balanced	

⬛ Reliability	
▪ Single	failure	causes	major	delay	
▪ Engineer	hardware	to	minimize	
failures

Hardware

Machine-Dependent 
Programming Model

Software 
Packages

Application 
Programs
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Internet	Computing
⬛ Web	Search	

▪ Aggregate	text	data	from	across	
WWW	

▪ No	definition	of	correct	operation	

▪ Do	not	need	real-time	updating	

⬛ Mapping	Services	
▪ Huge	amount	of	(relatively)	static	
data	

▪ Each	customer	requires	
individualized	computation

16

Online	Documents	
■ Must	be	stored	reliably 
■ Must	support	real-time	updating 
■ (Relatively)	small	data	volumes
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Other	Data-Intensive	Computing	Applications

⬛ Wal-Mart	
▪ 267	million	items/day,	sold	at	6,000	stores	

▪ HP	built	them	4	PB	data	warehouse	

▪ Mine	data	to	manage	supply	chain,	understand	
market	trends,	formulate	pricing	strategies	

⬛ LSST	
▪ Chilean	telescope	will	scan	entire	sky	every	3	days	
▪ A	3.2	gigapixel	digital	camera	
▪ Generate	30	TB/day	of	image	data
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Data-Intensive	Application	Characteristics

⬛ Diverse	Classes	of	Data	
▪ Structured	&	unstructured	

▪ High	&	low	integrity	requirements	

⬛ Diverse	Computing	Needs	
▪ Localized	&	global	processing	

▪ Numerical	&	non-numerical	

▪ Real-time	&	batch	processing
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Google	Data	Centers

Dalles,	Oregon	
▪ Hydroelectric	power	@	2¢	/	KW	Hr	
▪ 50	Megawatts	
▪ Enough	to	power	60,000	homes

■ Engineered	for	low	cost,	
modularity	&	power	efficiency	

■ Container:	1160	server	nodes,	
250KW

19
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Google	Cluster

▪ Typically	1,000−2,000	nodes	

⬛ Node	Contains	
▪ 2	multicore	CPUs	

▪ 2	disk	drives	

▪ DRAM

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

•   •  •
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Hadoop	Project
⬛ File	system	with	files	distributed	across	nodes	

▪ Store	multiple	(typically	3	copies	of	each	file)	
▪ If	one	node	fails,	data	still	available	

▪ Logically,	any	node	has	access	to	any	file	
▪ May	need	to	fetch	across	network	

⬛ Map	/	Reduce	programming	environment	
▪ Software	manages	execution	of	tasks	on	nodes

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

•   •  •
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Map/Reduce	Operation
⬛ Characteristics	

▪ Computation	broken	into	many,	short-
lived	tasks	
▪ Mapping,	reducing	

▪ Tasks	mapped	onto	processors	
dynamically	

▪ Use	disk	storage	to	hold	intermediate	
results	

⬛ Strengths	
▪ Flexibility	in	placement,	scheduling,	

and	load	balancing	
▪ Can	access	large	data	sets	

⬛ Weaknesses	
▪ Higher	overhead	
▪ Lower	raw	performance

Map
Reduce

Map
Reduce

Map
Reduce

Map
Reduce

Map/Reduce
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Map/Reduce	Fault	Tolerance
⬛ Data	Integrity	

▪ Store	multiple	copies	of	each	file	

▪ Including	intermediate	results	of	
each	Map	/	Reduce	
▪ Continuous	checkpointing	

⬛ Recovering	from	Failure	
▪ Simply	recompute	lost	result	

▪ Localized	effect	

▪ Dynamic	scheduler	keeps	all	
processors	busy	

⬛ Use	software	to	build	reliable	system	
on	top	of	unreliable	hardware

Map
Reduce

Map
Reduce

Map
Reduce

Map
Reduce

Map/Reduce
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Cluster	Programming	Model

▪ Application	programs	written	in	
terms	of	high-level	operations	on	
data	

▪ Runtime	system	controls	scheduling,	
load	balancing,	…	

⬛ Scaling	Challenges	
▪ Centralized	scheduler	forms	

bottleneck	

▪ Copying	to/from	disk	very	costly	

▪ Hard	to	limit	data	movement	
▪ Significant	performance	factor

Hardware

Machine-Independent 
Programming Model

Runtime 
System

Application 
Programs
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Recent	Programming	Systems

⬛ Spark	Project	

▪ at	U.C.,	Berkeley	
▪ Grown	to	have	large	open	source	community	

⬛ GraphLab	
▪ Started	as	project	at	CMU	by	Carlos	Guestrin	
▪ Environment	for	describing	machine-learning	algorithms	

▪ Sparse	matrix	structure	described	by	graph	
▪ Computation	based	on	updating	of	node	values
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Computing	Landscape	Trends
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Combining	Simulation	with	Real	Data

⬛ Limitations	
▪ Simulation	alone:	Hard	to	know	if	model	is	correct	

▪ Data	alone:	Hard	to	understand	causality	&	“what	if”	

⬛ Combination	
▪ Check	and	adjust	model	during	simulation
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Real-Time	Analytics

⬛ Millenium	XXL	Simulation	(2010)	
▪ 3	X	109	particles	

▪ Simulation	run	of	9.3	days	on	12,228	
cores	

▪ 700TB	total	data	generated	
▪ Save	at	only	4	time	points	
▪ 70	TB	

▪ Large-scale	simulations	generate	
large	data	sets	

⬛ What	If?	
▪ Could	perform	data	analysis	while	
simulation	is	running Simulation 

Engine
Analytic 
Engine

http://gavo.mpa-garching.mpg.de/mxxlbrowser/sea/sea.html
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Example	Analytic	Applications

ClassifierImage Description

Microsoft Project Adam

TransducerEnglish 
Text

German 
Text
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Data	Analysis	with	Deep	Neural	Networks

⬛ Task:	
▪ Compute	classification	of	set	of	
input	signals

31

⬛ Training	
■ Use	many	training	samples	of	form	input	/	desired	output	
■ Compute	weights	that	minimize	classification	error	

⬛ Operation	
■ Propagate	signals	from	input	to	output
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DNN	Application	Example
⬛ Facebook	DeepFace	Architecture
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Training	DNNs

⬛ Characteristics	
▪ Iterative	numerical	
algorithm	

▪ Regular	data	
organization

⬛ Project	Adam	Training	
■ 2B	connections	
■ 15M	images	
■ 62	machines	
■ 10	days

33
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Challenges	for	Convergence
⬛ Supercomputers

■ Customized 
■ Optimized for reliability 

■ Source of “noise” 
■ Static scheduling 

■ Low-level, processor-centric 
model

⬛ Data	Center	Clusters

■ Consumer grade 
■ Optimized for low cost 

■ Provides reliability 
■ Dynamic allocation 

■ High level, data-centric model

Hardware

Run-Time System

Application Programming
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Summary:	Computation/Data	Convergence

⬛ Two	Important	Classes	of	Large-Scale	Computing	
▪ Computationally	intensive	supercomputing	
▪ Data	intensive	processing	

▪ Internet	companies	+	many	other	applications	

⬛ Followed	Different	Evolutionary	Paths	
▪ Supercomputers:	Get	maximum	performance	from	available	hardware	
▪ Data	center	clusters:	Maximize	cost/performance	over	variety	of	data-centric	

tasks	
▪ Yielded	different	approaches	to	hardware,	runtime	systems,	and	application	

programming	

⬛ A	Convergence	Would	Have	Important	Benefits	
▪ Computational	and	data-intensive	applications	
▪ But,	not	clear	how	to	do	it



Carnegie Mellon

15-418/618 37
37

GETTING	TO	EXASCALE
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World’s	Fastest	Machines
⬛ Top500	Ranking:	High-performance	LINPACK	

▪ Benchmark:	Solve	N	x	N	linear	system	
▪ Some	variant	of	Gaussian	elimination	

▪ 2/3	N3	+	O(N2)	operations	
▪ Vendor	can	choose	N	to	give	best	performance	(in	FLOPS)	

⬛ Alternative:	High-performance	conjugate	gradient	
▪ Solve	sparse	linear	system	(≤	27	nonzeros	/	row)	
▪ Iterative	method	
▪ Higher	communication	/	compute	ratio
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Sunway	TaihuLight
⬛ Wuxi	China	

▪ Operational	2016	

⬛ Machine	
▪ Total	machine	has	40,960	processor	chips	
▪ Processor	chip	contains	256	compute	cores	+	4	

management	cores	

▪ Each	has	4-wide	SIMD	vector	unit	
▪ 8	FLOPS	/	clock	cycle	

⬛ Performance	
▪ HPL:	93.0	PF	(World’s	top)	

▪ HPCG:	0.37	PF	
▪ 15.4	MW	
▪ 1.31	PB	DRAM

⬛ Ratios	(Big	is	Better)	
▪ GigaFLOPS/Watt:	6.0	
▪ Bytes/FLOP:	0.014
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Tianhhe-2
⬛ Guangzhou	China	

▪ Operational	2013	

⬛ Machine	
▪ Total	machine	has	16,000	nodes	
▪ Each	with	2	Intel	Xeons	+	3	Intel	Xeon	Phi’s	

⬛ Performance	
▪ HPL:	33.9	PF	
▪ HPCG:	0.58	PF	(world’s	best)	
▪ 17.8	MW	
▪ 1.02	PB	DRAM

⬛ Ratios	(Big	is	Better)	
▪ GigaFLOPS/Watt:	1.9	
▪ Bytes/FLOP:	0.030
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Titan
⬛ Oak	Ridge,	TN	

▪ Operational	2012	

⬛ Machine	
▪ Total	machine	has	18,688	nodes	
▪ Each	with	16-core	Opteron	+	Tesla	K20X	GPU	

⬛ Performance	
▪ HPL:	17.6	PF	
▪ HPCG:	0.32	PF	
▪ 8.2	MW	
▪ 0.71	PB	DRAM

⬛ Ratios	(Big	is	Better)	
▪ GigaFLOPS/Watt:	2.2	
▪ Bytes/FLOP:	0.040
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How	Powerful	is	a	Titan	Node?

Titan
⬛ CPU	

▪ Opteron	6274	
▪ Nov.,	2011.		32nm	technology	
▪ 2.2	GHz	
▪ 16	cores	(no	hyperthreading)	
▪ 16	MB	L3	cache	
▪ 32	GB	DRAM	

⬛ GPU	
▪ Kepler	K20X	
▪ Feb.,	2013.		28nm	
▪ Cuda	capability	3.5	
▪ 3.9	TF	Peak	(SP)

GHC	Machine
⬛ CPU	

▪ Xeon	E5-1660	
▪ June,	2016.		14nm	technology	
▪ 3.2	GHz	
▪ 8	cores	(2x	hyperthreaded)	
▪ 20	MB	L3	cache	
▪ 32	GB	DRAM	

⬛ GPU	
▪ GeForce	GTX	1080	
▪ May,	2016.		16nm	
▪ Cuda	capability	6.0	
▪ 8.2	TF	Peak	(SP)
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Performance	of	Top	500	Machines

⬛ From	presentation	by	Jack	Dongarra	
⬛ Machines	far	off	peak	when	performing	HPCG
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What	Lies	Ahead
⬛ DOE	CORAL	Program	

▪ Announced	Nov	2014	

▪ Delivery	in	2018	

⬛ Vendor	#1	
▪ IBM	+	nVidia	+	Mellanox	

▪ 3400	nodes	
▪ 10	MW	
▪ 150	–	300	PF	peak	

⬛ Vendor	#2	
▪ Intel	+	Cray	
▪ ~50,000	nodes	(Xeon	Phi’s)	
▪ 13	MW	

▪ >	180	PF	peak
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TECHNOLOGY	CHALLENGES
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Moore’s	Law

▪ Basis	for	ever-increasing	computer	power	
▪ We’ve	come	to	expect	it	will	continue
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Challenges	to	Moore’s	Law:	Technical

▪ Must	continue	to	shrink	features	sizes	

▪ Approaching	atomic	scale	

⬛ Difficulties	
▪ Lithography	at	such	small	dimensions	

▪ Statistical	variations	among	devices

• 2022: transistors 
with 4nm feature 
size 

• Si lattice spacing 
0.54nm
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Challenges	to	Moore’s	Law:	Economic
⬛ Growing	Capital	Costs	

▪ State	of	art	fab	line	~$20B	
▪ Must	have	very	high	volumes	to	amortize	investment	
▪ Has	led	to	major	consolidations
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Dennard	Scaling

▪ Due	to	Robert	Dennard,	IBM,	1974	

▪ Quantifies	benefits	of	Moore’s	Law	

⬛ How	to	shrink	an	IC	Process	
▪ Reduce	horizontal	and	vertical	dimensions	by	k	

▪ Reduce	voltage	by	k	

⬛ Outcomes	
▪ Devices	/	chip	increase	by	k2	
▪ Clock	frequency	increases	by	k	
▪ Power	/	chip	constant	

⬛ Significance	
▪ Increased	capacity	and	performance	

▪ No	increase	in	power
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End	of	Dennard	Scaling

⬛ What	Happened?	
▪ Can’t	drop	voltage	below	~1V	
▪ Reached	limit	of	power	/	chip	in	2004	
▪ More	logic	on	chip	(Moore’s	Law),	but	can’t	make	them	run	faster	

▪ Response	has	been	to	increase	cores	/	chip
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Research	Challenges

⬛ Supercomputers	
▪ Can	they	be	made	more	dynamic	and	adaptive?	

▪ Requirement	for	future	scalability	

▪ Can	they	be	made	easier	to	program?	
▪ Abstract,	machine-independent	programming	models	

⬛ Data-Intensive	Computing	
▪ Can	they	be	adapted	to	provide	better	computational	performance?	
▪ Can	they	make	better	use	of	data	locality?	

▪ Performance	&	power-limiting	factor	

⬛ Technology	/	Economic	
▪ What	will	we	do	when	Moore’s	Law	comes	to	an	end	for	CMOS?	
▪ How	can	we	ensure	a	stable	manufacturing	environment?


