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Comparing Two Large-Scale Systems

B Oakridge Titan B Google Data Center

= Servers to support
millions of customers

= Monolithic

supercomputer (3"
fastest in world) = Designed for data

= Designed for compute- collection, storage, and
intensive applications analysis
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Supercomputing Landscape

Data Intensity

Oakridge Titan

Modeling &
Simulation-Driven

Science &
Engineering
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Supercomputer Applications

=

Science Industrial
Products

B Simulation-Based Modeling
= System structure + initial conditions + transition behavior
= Discretize time and space
= Run simulation to see what happens

B Requirements
= Model accurately reflects actual system
= Simulation faithfully captures model
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Titan Hardware

Local Network

A A
v v

Node 1 Node 2

B Each Node
= AMD 16-core processor
= nVidia Graphics Processing Unit
= 38 GB DRAM
m No disk drive

B Overall
= 7MW, S200M
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Titan Node Structure: CPU

AMD Opteron™ 6274 (Interlagos) CPU

NUMA Node 0

DRAM
Memory

B CPU
m 16 cores sharing common memory
= Supports multithreaded programming
= ~0.16 x 102 floating-point operations per second (FLOPS) peak
performance
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Carnegie Mellon

Titan Node Structure: GPU

Control

Hyper-Q Execution Manager

EE E

Multicore CPU

!

Level 2 Hardware Cache

! ! s ! !

Stream Optimized Device Memory

B Kepler GPU

= 14 multiprocessors

= Each with 12 groups of 16 stream processors
= 14X 12X 16 =2688

= Single-Instruction, Multiple-Data parallelism
Single instruction controls all processors in group

= 4.0 x 102 FLOPS peak performance
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Titan Programming: Principle

B Solving Problem Over Grid
= E.g., finite-element system

= Simulate operation over time

B Bulk Synchronous Model

m Partition into Regions
= pregions for p-node machine

= Map Region per Processor
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Titan Programming: Principle (cont)

B Bulk Synchronous Model

= Map Region per Processor

= Alternate P, P, Py P, P
= All nodes compute behavior of J_ J_ J_ J_ J_
region Compute
— Perform on GPUs Communicate
= All nodes communicate values at Compute
boundaries
Communicate
Compute
Communicate

I I 1 1 1T
vV v v v Y
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Bulk Synchronous Performance

P, P, P, P, P
I = Limited by performance of slowest
processor
Compute
B Strive to keep perfectly
Communicate balanced
:lJ LIJ LI: Compute = Engineer hardware to be highly
I ! reliable
Communicate = Tune software to make as regular
Compute .
:IJ LIJ as possible
H M o H V24
Commumcate = Eliminate “noise

= Operating system events
= Extraneous network activity

vV v Vv v
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Titan Programming: Reality

Bl System Level

» Message-Passing Interface (MPI) supports node computation,
synchronization and communication

B Node Level

Parallel
= OpenMP supports thread-level operation of node CPU Programming =
m CUDA programming environment for GPUs n e

= Performance degrades quickly if don’t have perfect balance
among memories and processors

B Result

= Single program is complex combination of multiple
programming paradigms

= Tend to optimize for specific hardware configuration
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MPI Fault Tolerance

B Checkpoint

P, P P, 4 Py = Periodically store state of all processes
J I I_ = Significant I/0O traffic
— B B I ' m— .\
= When failure occurs
Compute & . Wasted = Reset state to that of last checkpoint
Communicate Computation . Al intervening computation wasted
J
1 I X< 1 I B Performance Scaling
Restore = Very sensitive to number of failing
- . . . = components
Compute &
Communicate

I 1 1 1 1
vvyvyyy
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Supercomputer Programming Model

Application = Program on top of bare hardware
Programs
K B Performance
Software = Low-level programming to
Packages maximize node performance
7y .
\ v Machine-Dependent = Keep everything globally

Programming Model

synchronized and balanced
B Reliability

= Single failure causes major delay

Hardware

= Engineer hardware to minimize
failures
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>
=1 Google Data Center Data-Intensive
c .
‘dé . Web search Computing Landscape
3| \intermetsca,  Mepping ] diroctions
© : .
Computin
Q P 9 * Video streaming
Cloud
Services
Personal
Computing
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GM il COUS'G )GOUSIC m.. del.icio.us

Internet Computing flickr YullD Google o FEN
\f woroPress (& Technorati™ =" zy:?TGCh i
PANDORA CO“SIC (sitTorrent

. Web SearCh amazoncom Bl.o,glin‘es @6)&‘.,;\\-1
stylehive~ "% Flock * I i ISe%
m Aggregate text data from across
WWW ©AllPeers [IERIRR FTEEED Googse
Gabbly . “‘YxroO! 2 [N SR ST
= No definition of correct operation Dimpce  # &Ym= posize
: . S [ty ' Zooomy ™ B £ Pageflakes
= Do not need real-time updating ;s:l)uxo :

B Mapping Services

= Huge amount of (relatively) static
data
= Each customer requires Online Documents

individualized computation = Must be stored reliably
= Must support real-time updating

= (Relatively) small data volumes
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B Wal-Mart
= 267 million items/day, sold at 6,000 stores
= HP built them 4 PB data warehouse

= Mine data to manage supply chain, understand
market trends, formulate pricing strategies

- LSST Large Synoptic Survey Telescope

= Chilean telescope will scan entire sky every 3 days

= A 3.2 gigapixel digital camera
= Generate 30 TB/day of image data
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Data-Intensive Application Characteristics

B Diverse Classes of Data
m Structured & unstructured

= High & low integrity requirements

B Diverse Computing Needs
m Localized & global processing
= Numerical & non-numerical

= Real-time & batch processing
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Carnegie Mellon

Google Data Centers

= Engineered for low cost,

Dalles, Oregon
! & modularity & power efficiency

' KW H
= Hydroelectric power @ 2¢ / ; = Container: 1160 server nodes,

= 50 Megawatts 250KW
= Enough to power 60,000 homes
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Google Cluster

Local Network

Node 1 Node 2

= Typically 1,000-2,000 nodes
B Node Contains

s 2 multicore CPUs
m 2 disk drives
= DRAM
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Hadoop Project

B File system with files distributed across nodes

Local Network
A A A
\ 4 \ 4 \ 4
[ E% E% fﬁ
Node 1 Node 2 Node n

= Store multiple (typically 3 copies of each file)
= If one node fails, data still available

= Logically, any node has access to any file
= May need to fetch across network

B Map / Reduce programming environment

= Software manages execution of tasks on nodes
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Map/Reduce Operation

B Characteristics

Map/Reduce = Computation broken into many, short-
1 T T T I O Y I lived tasks
Reduce = Mapping, reducing
111111 L1111 wmap = Tasks mapped onto processors
Reduce dynamically
111111 L1111 wap = Use disk storage to hold intermediate
Reduce results
111111 L1111 wmap .Strengths
Reduce

= Flexibility in placement, scheduling,
and load balancing

= Can access large data sets
B Weaknesses

= Higher overhead

= Lower raw performance
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Carnegie Mellon

Map/Reduce Fault Tolerance

B Data Integrity
Map/Reduce

A A A A A A A A A A ™

Reduce

= Store multiple copies of each file

= Including intermediate results of
each Map / Reduce
= Continuous checkpointing

Map
Reduce

B Recovering from Failure
LT T 11 wmap

Reduce = Simply recompute lost result
T TTTT1 TTSHT T T wap = Localized effect
Reduce = Dynamic scheduler keeps all

processors busy

B Use software to build reliable system
on top of unreliable hardware
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Cluster Programming Model

= Application programs written in
terms of high-level operations on

Application
data Programs
= Runtime system controls scheduling,  Machine-Independent 2
load balancing, ... Programming Model
. Runtime
B Scaling Challenges System

s Centralized scheduler forms
bottleneck Hardware

= Copying to/from disk very costly

s Hard to limit data movement
= Significant performance factor
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Recent Programming Systems

723 Spark MLlib

B Spark Project SPQI'

SQL ingll (machine
learning)

Apache Spark

= at U.C,, Berkeley

= Grown to have large open source community

Gra hLabﬁ

ameg‘e Dielloat Machine Learning Startup GraphLab Gets A New Name

And An $18.5M Check
B Graphlab vt s i

m Started as project at CMU by Carlos Guestrin

» Environment for describing machine-learning algorithms
= Sparse matrix structure described by graph
= Computation based on updating of node values
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»
»

Computing Landscape Trends

Data Intensity

Mixing simulation
with data analysis

Modeling &
Simulation-Driven
Science &
Engineering

Traditional
Supercomputing
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Combining Simulation with Real Data

B Limitations
s Simulation alone: Hard to know if model is correct

= Data alone: Hard to understand causality & “what if”

B Combination

m Check and adjust model during simulation

27
15-418/618 27



Real-Time Analytics

B Millenium XXL Simulation (2010)
= 3 X 10° particles

= Simulation run of 9.3 days on 12,228
cores

= 700TB total data generated
= Save at only 4 time points
= /0TB

= Large-scale simulations generate
large data sets

B What If?

= Could perform data analysis while

simulation is running Simulation
Engine

Analytic
Engine

28
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Carnegie Mellon

Google Data Center Computing Landscape Trends

>

Sophisticated
data analysis

——>

Internet-Scale
Computing

Data Intensity
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Carnegie Mello

Example Analytic Applications

Microsofg Project Adam

Image Classifier ‘ Description

| EENGLISH > GERMAN - GTranslater B
Arayiz Dili / Interface Language  Help
GTranslater
Enter Text Translaton
GTranslater is an Open Source language GTranslater ist ein Open-Source-Sprache
translation software for the desktop that uses Ubersetzungs-Software fur den Desktop, das -
Google's translation service that supports 89 Google-Ubersetzung, die in insgesamt 89 E n g I |s h Ge rma n
languages in total. The interface of the Sprachen. Die Schnittstelle des tragbaren Tra nsd u ce r
portable software program is pretty basic Software ist sehr grundlegenden mit zwei Text Text
providing two panes that are used to display Scheiben, die verwendet werden, um das
the original and the translated text. Original und den Gbersetzten Text. Der Benutzer
kann Einfiigen von Text in der linken
The user can paste text into the left pane Fensterbereich, die Gbersetzt durch Driicken der
which will get translated by pressing F5. The Taste F5. Der ubersetzte Text wird dann im
translated text is then shown in the right rechten Fensterbereich. Sprache Selektoren
pane. Language selectors are available below sind unter jedem Fenster, die es einfach
each pane that make it easy to switch machen, um Sprachen. Es gibt sogar einen
languages. There is even an unknown entry unbekannten Eintrag fur das Ubersetzen von
for translating languages that cannot be Sprachen, die nicht identifiziert werden kann
identified positively by the user. positiv durch den Benutzer.
ENGLISH v| 5 |cRMan .
lear | hang xatior anslate [F5 bose
15 —xoroxo 30



Carnegie Mellon

Data Analysis with Deep Neural Networks

Input Hidden Hidden Output
. TaSk: Layer Layer #1 Layer #2 Layer
= Compute classification of set of o Neurons Neurons
. . X0 M Tt Ty
input signals WA Wik
X < % \ Neuron
E e 2 .
y
X2 i J\ / /
Y
X3 W / ZD/ /
I/ ,
Bias ‘ ‘
Inputs 1 1 1

B Training
= Use many training samples of form input / desired output

= Compute weights that minimize classification error

B Operation

= Propagate signals from input to output
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DNN Application Example

B Facebook DeepFace Architecture

[ |
= | I
2\ alg!
=l \/ 18!
& |2
) )
g | & |
a. | i
w |
- L
& M2: C3: L4: LS: L6: F7: F8:
“alista Flockhart oooz,,'g Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16  16x5x5x16 4096d 4030d
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21
-~
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Training DNNs
Model Size Training Training
/ X j’t >
B Characteristics B Project Adam Training
= Iterative numerical = 2B connections
algorithm = 15M images
= Regular data = 62 machines

organization = 10 days
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>

Google Data Center Trends

Sophisticated
data analysis

Internet-Scalé

Computing Convergence?

Data Intensity

Mixing simulation
with real-world data

Modeling &
Simulation-Drive
Science &
ngineering

Traditional
Supercomputing
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Challenges for Convergence

B Supercomputers B Data Center Clusters
Hardware
= Customized = Consumer grade
= Optimized for reliability = Optimized for low cost

Run-Time System

= Source of “noise” = Provides reliability
= Static scheduling = Dynamic allocation

Application Programming

= Low-level, processor-centric = High level, data-centric model
model
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Summary: Computation/Data Convergence

B Two Important Classes of Large-Scale Computing

= Computationally intensive supercomputing

= Data intensive processing
= Internet companies + many other applications

B Followed Different Evolutionary Paths

= Supercomputers: Get maximum performance from available hardware

= Data center clusters: Maximize cost/performance over variety of data-centric
tasks

= Yielded different approaches to hardware, runtime systems, and application
programming
B A Convergence Would Have Important Benefits

= Computational and data-intensive applications

= But, not clear how to do it
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GETTING TO EXASCALE
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World’s Fastest Machines

B Top500 Ranking: High-performance LINPACK

= Benchmark: Solve N x N linear system

= Some variant of Gaussian elimination

= 2/3 N3 + O(N?) operations

= Vendor can choose N to give best performance (in FLOPS)
B Alternative: High-performance conjugate gradient

= Solve sparse linear system (< 27 nonzeros / row)

= |terative method

= Higher communication / compute ratio
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Carnegie Mellon

Sunway Taihulight

B Wuxi China
= Operational 2016

B Machine

= Total machine has 40,960 processor chips

= Processor chip contains 256 compute cores + 4
management cores

s Each has 4-wide SIMD vector unit
= 8 FLOPS / clock cycle

B Performance B Ratios (Big is Better)
= HPL: 93.0 PF (World’s top) = GigaFLOPS/Watt: 6.0
= HPCG: 0.37 PF = Bytes/FLOP: 0.014
= 15.4 MW

= 1.31 PB DRAM
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Carnegie Mellon

Tianhhe-2

B Guangzhou China
= Operational 2013

B Machine
= Total machine has 16,000 nodes
m Each with 2 Intel Xeons + 3 Intel Xeon Phi’s

B Performance B Ratios (Big is Better)
= HPL:33.9 PF = GigaFLOPS/Watt: 1.9
= HPCG: 0.58 PF (world’s best) = Bytes/FLOP: 0.030
= 17.8 MW

= 1.02 PB DRAM
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[ ]
Titan

B Oak Ridge, TN
= Operational 2012
B Machine

= Total machine has 18,688 nodes
= Each with 16-core Opteron + Tesla K20X GPU

B Performance B Ratios (Big is Better)
= HPL:17.6 PF = GigaFLOPS/Watt: 2.2
= HPCG:0.32 PF = Bytes/FLOP: 0.040
= 8.2 MW

= 0.71 PB DRAM
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How Powerful is a Titan Node?

Titan GHC Machine
B CPU B CPU
= Opteron 6274 = Xeon E5-1660
= Nov.,, 2011. 32nm technology = June, 2016. 14nm technology
m 2.2 GHz s 3.2 GHz
= 16 cores (no hyperthreading) = 8 cores (2x hyperthreaded)
= 16 MB L3 cache = 20 MB L3 cache
= 32 GB DRAM = 32 GB DRAM
B GPU B GPU
= Kepler K20X m GeForce GTX 1080
= Feb., 2013. 28nm = May, 2016. 16nm
= Cuda capability 3.5 = Cuda capability 6.0

= 3.9 TF Peak (SP) m 8.2 TF Peak (SP)
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Performance of Top 500 Machines

1000
100 §
10
- ’7 l",]" [':I-v‘\—-‘ 13-4,
@ A i, | o .
8- | 4% . o
& HPL Rmax (Pflop/s)
s—HPCG (Pflopls)
0.1
0.01
0.001
TR 2288089085838 BBR3BY
TeE A N®®B®

B From presentation by Jack Dongarra
Bl Machines far off peak when performing HPCG
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What Lies Ahead

B DOE CORAL Program
= Announced Nov 2014
= Deliveryin 2018

B Vendor #1
= |IBM + nVidia + Mellanox
= 3400 nodes
= 10 MW
= 150-300 PF peak

l Vendor #2
= Intel + Cray
= ~50,000 nodes (Xeon Phi’s)
n 13 MW
= > 180 PF peak
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TECHNOLOGY CHALLENGES
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Moore’s Law

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

16-Core SPARC T3

Six-Core Core -7\
2,600,000,000 SixCore Xeon 7400, \\‘ 2 @10-Core Xeon Westmere-EX
Dual-Core ltanum 2@ @ &c(%e POWER?
AMD K10, $—Quad-core z
1,000,000,0001 NS i
tanium 2 with 9MB cache @ ™. Six-Core Opteron 2400
AMD K108 Core i7 (Quad)
20
Itanium 2@ ‘Sghe uo
100,000,000 + @ AMD K8
Pentium 4@ @Barton ® Alom
AMD K7
@ AMD K6-Iil

- curve shows transistor AMD K6

C - X /

S 10,000,000 count doubling every e Foriiom B

8 two years @ AMDKS

- ® Pentium

(o)

» 80485 @

2 1,000,000

=

o
= 803860,

80286 @
100,000
68000 @
© 80186
8085 ® @808
8085_
10,000“ 6800 g @6809
soso, |/ ®z80
80080 ? OMOS 6502

2,300~  004e “rea ta02

1 9|71 1 9180 1 '5;90 2(;00 20I1 1
Date of introduction
= Basis for ever-increasing computer power
= We’'ve come to expect it will continue
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Challenges to Moore’s Law: Technical

10 4
> Technology
O node _
L e L -+ 2022: transistors
. | with 4nm feature
o a ‘-628.18 = Future .
E 0.1 4 QL size
" - Si lattice spacing
08T o
— g = 0.54nm
History <=1
0.001 -

1970 1980 1990 2000 2010 2020 2030
Year
s Must continue to shrink features sizes

= Approaching atomic scale

B Difficulties

= Lithography at such small dimensions

= Statistical variations among devices
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Challenges to Moore’s Law: Economic

B Growing Capital Costs
= State of art fab line ~S20B

48
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Altis
Semiconductor
Dongbu HiTek

Grace
Semiconductor
SMIC

Umc

TSMC
Globalfoundries

Seiko Epson
Freescale
Infineon
Sony

Texas
Instruments

Renesas (NEC)
IBM
Fujitsu

Toshiba

STMicroelectronics

Intel
Samsung

130nm

Dongbu HiTek
Grace
Semiconductor
SMIC

Umc

TSMC
Globalfoundries
Seiko Epson
Freescale
Infineon

Sony

Texas
Instruments

Renesas

Fujitsu
Toshiba

STMicroelectronics

Intel
Samsung

90nm

= Must have very high volumes to amortize investment

= Has led to major consolidations

IE Y '-E"

umc
TSMC

Globalfoundries
Infineon

Sony

Texas
Instruments

Renesas
IBM
Fujitsu
Toshiba

STMicroelectronics

Intel
Samsung

65nm

SMIC

UMC

TSMC
Globalfoundries
Renesas

IBM

Fujitsu

Toshiba

STMicroelectronics

Intel
Samsung

45/40nm

e

TSMC

Globalfoundries

STMicroelectronics
Intel
Samsung

| 32/280m |

TSMC
Globalfoundries
Intel

Samsung

22/20nm
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Dennard Scaling

= Due to Robert Dennard, IBM, 1974

s Quantifies benefits of Moore’s Law

B How to shrink an IC Process
= Reduce horizontal and vertical dimensions by k

= Reduce voltage by k
B Outcomes
= Devices / chip increase by k?
= Clock frequency increases by k
= Power / chip constant
B Significance
= Increased capacity and performance
= No increase in power
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End of Dennard Scaling

7 p
10 ' ’/ Transistors
t (thousands)
6|
10"}
5
107 |
Single-thread
4 | Performance
10 f (SpeciINT)
3|
10° |
2 | Typical Power
10" (Watts)
1 . “7  Number o
10 : Cores
0 > A
10 ¢
1975 1980 1985 1990 1995 2000 2005 2010 2015
Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

B What Happened?

= Can’t drop voltage below ~1V
= Reached limit of power / chip in 2004

= More logic on chip (Moore’s Law), but can’t make them run faster
= Response has been to increase cores / chip

50
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Research Challenges

B Supercomputers

= Can they be made more dynamic and adaptive?
= Requirement for future scalability

= Can they be made easier to program?
= Abstract, machine-independent programming models

B Data-Intensive Computing
= Can they be adapted to provide better computational performance?

= Can they make better use of data locality?
= Performance & power-limiting factor

B Technology / Economic
= What will we do when Moore’s Law comes to an end for CMOS?

= How can we ensure a stable manufacturing environment?
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