Lecture 28:

Course Wrap Up &
Project Presentation Tips

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2017

OneRepublic

Counting Stars
(Native)

“Lately, I've been, I've been losing sleep
Dreaming about the things that we could be. ..”

- everyone

CMU 15-418/618, Spring 2017

Today

m Exam 2 discussion
m Parallelism competition hints/quidelines

m Wrap up: a few final comments about class topics

CMU 15-418/618, Spring 2017

Announcements

m Please fill out course evaluations, it helps make the course better

® Final project presentations: Friday May 12th

- 2pm on Wed May 10th staff + judges start looking at your project pages to pick
finalists

- 20 finalist teams announced at 2pm on Thursday

- Parallelism Competition:
- 8:30-11:30am, Rashid Auditorium (with breakfast and snacks)
- Everyone is expected to attend to support their classmates.

- Additional project presentations:
- Presentations the rest of the day in Smith Hall to course staff

m Project reports due at 11:59pm that evening, no late days

CMU 15-418/618, Spring 2017

Exam 2 discussion (no slides)

CMU 15-418/618, Spring 2017

Final projects

CMU 15-418/618, Spring 2017

Presentation day

m Yes, presentations are considered when determining your
overall project grade, but in general Friday is a celebration of
finishing the course: the “Parallelism Competition” and all the
project presentations are chance to talk about the neat work
you have done.

CMU 15-418/618, Spring 2017

Presentation format

m Each group has six minutes to talk

= Plus 1-2 minutes for questions from judges

B Presentation format is up to you: slides, live demo, etc.

- Start with name(s) of students, title of project on a title slide

- Both students in a 2-person group should speak

B Present off your own laptop, or make arrangements with staff

CMU 15-418/618, Spring 2017

Project presentation tips

CMU 15-418/618, Spring 2017

Benefit TO YOU of a good (clear) talk *

® Non-linear increase in the impact of your work
- Others are more likely to remember and build upon your work
- Others are more likely to come up to you after the talk

m (larity is highly prized: the audience remembers you

- “Hey man, that was a great talk... are you looking for a job
anytime soon?”

CMU 15-418/618, Spring 2017

Your #1 priority should be to be clear, rather
than be comprehensive

(your project writeup is the place for completeness)

Everything you say should be understandable by someone in this class.
If you don’t think the audience will understand, leave it out (or change).
(spend the time saying something we will understand)

This will be much harder than it seems.

Here are some tips to help.

CMU 15-418/618, Spring 2017

1.

Put yourself in your audience’s shoes

This is a major challenge for most technical speakers. (including professors)
(Tip: recite a sentence out loud to yourself. Do you really expect someone

who has not been working with you everyday on the project to understand
what you just said?)

CMU 15-418/618, Spring 2017

Consider your audience

m Everyone in the audience knows about parallel programming
- (S terminology/concepts need not defined

B Most of the audience knows little-to-nothing about the
specific application domain or problem you are trying to solve
- Application-specific terminology should be defined or avoided

B The judges (and course staff) are trying to figure out the
“most interesting” thing that you found out or accomplished
(your job is to define most interesting for them)

CMU 15-418/618, Spring 2017

2.

Pick a focus.
Figure out what you want to say. Then say it.
(and nothing more)

A good speaking philosophy: “every sentence matters”

Tip: for each sentence, ask yourself:
What is the point | am trying to make?

Did the sentence | just say make that point?

CMU 15-418/618, Spring 2017

Pick a focus

In this class, different projects should stress different results

Some projects may wish to show a flashy demo and describe how it works
(proof by “it works”)

Other projects may wish to show a sequence of graphs (path of
progressive optimization) and describe the optimization that took system
from performance Ato B to C

Other projects may wish to clearly contrast parallel CPU vs. parallel GPU
performance for a workload

Your job is not to explain what you did, but to explain what
you think we should know

CMU 15-418/618, Spring 2017

Ilgnoring every sentence matters

Never ever, ever, ever do this!

Outline

@ Introduction
® Related Work

® Proposed System Architecture
<+ Basic design decision
<+ Dedicated hardware for T&l
<+ Reconfigurable processor for RGS

® Results and Analysis
® Conclusion

(MU 15-418/618, Spring 2017

3.

The audience prefers not to think (much)

The audience has a finite supply of mental effort

B The audience does not want to burn mental effort about things
you know and can just tell them.

- They want to be led by hand through the major steps of your story

- They do not want to interpret any of your figures or graphs, they want to be
directly told how to interpret them (e.g., what to look for in a graph).

B The audience does want to spend their energy thinking about:

- Potential problems with what you did (did you consider all edge cases? Is your
evaluation methodology sound? Is this a good platform for this workload?)

- Implications of your approach to other things

- Connections to their own work or project

CMU 15-418/618, Spring 2017

4.

Set up the problem.
Establish inputs, outputs, and constraints
(goals and assumptions)

Establish goals and assumptions early

m “Given these inputs, we wish to generate these outputs...”
m We are working under the following constraints:

- Example: the outputs should have these properties

- Example: the algorithm...

- Should be real time

- Must interoperate with this existing library which we cannot change
- Must ascribe to this interface (because it’s widely used)

- Example: the system...

- Need not compile all of Python, only this subset... (because for my domain
that’s good enough)

- Should realize about 90% of the performance of hand-tuned code, with
much lower development time

CMU 15-418/618, Spring 2017

Basics of problem setup

m Whatis the computation performed (or system built)?
- What are the inputs? What are the outputs?

m Why does this problem stand to benefit from optimization?

- “Real-time performance could be achieved”
- “Researchers could run many more trials, changing how science is done”

= “Itis 90% of the execution time in this particular system”

m Why s it hard? (What made your project interesting? What
should we reward you for?)

- What turned out to be the hardest part of the problem?

- This may involve describing a few key characteristics of the workload (e.g.,
overcoming divergence, increasing arithmetic intensity)

CMU 15-418/618, Spring 2017

J.

How to describe a system

CMU 15-418/618, Spring 2017

How to describe a system

m Start with the nouns (the key boxes in a diagram)

- Major components (processors, memories, interconnects, etc.)
- Major entities (particles, neighbor lists, pixels, pixel tiles, features, etc.)
- What is state in the system?

B Then describe the verbs

- Operations that can be performed on the state (update particle
positions, compute gradient of pixels, traverse graph, etc.)

- Operations produce, consume, or transform entities

CMU 15-418/618, Spring 2017

6.

Surprises™ are almost always bad:

Say where you are going and why you must go there
before you say what you did.

* | am referring to surprises in talk narrative and/or exposition. A surprising result is great.
CMU 15-418/618, Spring 2017

Give the why before the what

Why provides the listener context for...

- Compartmentalizing: assessing how hard they should pay attention (is this a critical
idea, or just an implementation detail?). Especially useful if they are getting lost.

- Understanding how parts of the talk relate (“Why is the speaker now introducing a
new optimization approach?”)

® |n the algorithm/system description section:

- “We need to first establish some terminology...”
- “Even though | just told you our solution to X, the problem we still haven't solved is...”
- “Now that we have defined a cost metric we need a method to minimize it...”

B |n the results section: Twolkions:

* How much does SRDH improve traversal cost

- Speaker: “Key questions to ask about our approach are...” [EEresswisaramiteton i

is present?

- Listener: “Thanks! | agree, those are good questions.
* How does the benefit of the SRDH decrease as
I.Etls see What the rESUItS SaY!” less shadow ray information is known a priori?

(Is a practical implementation possible?)

/.

Always, always, always
explain any figure or graph

(remember, the audience does not want to think)

CMU 15-418/618, Spring 2017

Explain every figure

® Explain_every visual element used in the figure (never make the audience decode a figure)

m Refer to highlight colors explicitly (explain why the visual element is highlighted)

Multi-sample locations [Akeley 93]

Sample coverage multiple times per pixel (for anti-aliased edges)

Example voice over: “Here I'm showing you a pixel grid, a triangle, and the location of four sample points at each
pixel. Sample points falling within the triangle are colored red.

CMU 15-418/618, Spring 2017

Explain every figure

B Lead the listener through the key points of the figure

B Useful phrase: “As you can see...”

- It’s like verbal eye contact. It keeps the listener engaged and makes the listener happy... “Oh yeah, | can
see that! | am following this talk! Yippee!”

Pixels at triangle boundaries are shaded multiple times

Shading computations per pixel

Example voice over: “Now I'm showing you two adjacent triangles, and I'm coloring pixels according to the number
of shading computations that occur at each pixel as a result of rendering these two triangles. As you can see in the
light blue region, pixels near the boundary of the two triangles get shaded twice. CMU 15-418/618, Spring 2017

Explain every results graph

® May start with a general intro of what the graph will address.
B Then describe the axes (your axes better have labels!)
B Then describe the one point that you wish to make with this results slide (more on this later!)

Autoscheduler performs comparably to experts

Performance relative to schedules authored by experts
(6 core Xeon CPU)

0.5 L 1.5

Bilateral grid On 8 of the 14 benchmarks

=T performance within 10% of
Camera pipe

Convolution layer | experts or better
Harris corner
Histogram equal
Mscale interpolate
Lens blur
Local laplacian
Matrix multiply
\EVEING
Non-local means
Unsharp mask
VGG-16 evaluation

Example voice over: “Our first question was about performance: how fast is the auto scheduler compared to experts? And we found out that it's quite
good. This figure plots the performance of the autoscheduler compared to that of expert code. So expert code is 1. Faster code is to the right. As you
can see, the auto scheduler is within 10% of the performance of the experts in many cases, and always within a factor of 2.

CMU 15-418/618, Spring 2017

8.

In the results section:
One point per slide!
One point per slide!
One point per slide!

(and the point is the title of the slide!!!)

Merging reduces total shaded quad fragments Merging reduces total shaded quad fragments
1/2-pixel-area triangles: 8x reduction Ten-pixel-area triangles: 2x reduction

Big Guy Scene ! % Big Guy Scene ! %

No merging No merging
Merging s Merging s

Shading computations / pixel (avg)
Shading computations / pixel (avg)

Average triangle area (pixels) Average triangle area (pixels)

Extra shading occurs at merging window boundaries For micropolygons: factor of eight across scenes

4 . 1/2 pixel area triangles
1/2 pixel area triangles g 2

Average improvement: 8.1x

Plane

Sine waye

Big guy
Army
Zinkia
Point cloud
Furball

! } !
2 a 6

Shaded quad fragments by current GPU
(relative to quad-fragment merging)

Nearly identical visual quality Differences exist near silhouettes

Quad-fragment merging Current GPU (no merging) Difference image (10x intensity)

/618, Spring 2017

Merging reduces total shaded quad fragments
1/2-pixel-area triangles: 8x reduction

—_
H

Big Guy Scene 1%

-
N

o

No merging

-
o

Shading computations / pixel (avg)

i t t t t
4 6 8
Average triangle area (pixels)

Extra shading occurs at merging window boundaries

1/2 pixel area triangles

Nearly identical visual quality

Quad-fragment merging

Current GPU (no merging)

PPERTa.

Merging s

Merging reduces total shaded quad fragments
Ten-pixel-area triangles: 2x reduction

Big Guy S \
ig Guy Scene ,%
N

No merging
Merging s

- fry
N B

-t
o

Shading computations / pixel (avg)

o

¢ t t ¢ }
4 6 8
Average triangle area (pixels)

For micropolygons: factor of eight across scenes

1/2 pixel area triangles

Average improvement: 8.1x

Plane

Sine waye

Big guy
Army
Zinkia
Point cloud
Furball

| |
6

Shaded quad fragments by current GPU
(relative to quad-fragment merging)

Differences exist near silhouettes

Difference image (10x intensity)

Place the point of the
slide in the title:

It provides context for
interpreting the graph

(Listener: “Let me see if | can
verify the point in the graph
to check my understanding”)

Another example of the

“audience prefers not to
think” principle

CMU 15-418/618, Spring 2017

Bad examples of results slides

Results (ICache + RF)

I$ + Register File enery (Joules)

Baseline mam
Treelets Only m—
STRaTA mam

2.95 3.0

Hairball

Simulation Results : RGS

® RGS Performance

< 147-198 Mray/sec
<+ Texture cache concerns : Mip-mapping & Compression

Sibenik

Tﬂlu

UNIVERSITY
of UTAH

Vegetation

Ray Cache hit rate (%) | Bandwidth | Performance
Test scene | type Texture Data (GB/s) | (Mrays/sec)
Sibenik Primary 96.76 0.5 182.11
(80K tri.) FSR 91.24 1.9 172.25
Fairy Primary 03.25 06.87 0.8 175.66
(179K tri.) | FSR 81.49 94.91 1.9 147.45
Ferrari Primary 86.12 98.09 0.6 183.28
(210K tri.) | FSR 75.95 95.71 2.0 163.67
Conference | Primary 08.44 0.2 198.32
(282K tri.) | FSR - 05.72 0.8 158.79

B Notice how you (as an audience member)
are working to interpret the trends in

these graphs
- You are asking: what do these results say?

® You just want to be told what to look for

Results

20 ~TiledDeferred
~~ClusteredForward
15 ClusteredDeferred

- \.n;lu IJ"'I"IOI\118, Sprlng 2017

Titles matter.

9.

If you read the titles of your talk all the way through, it should be a
great summary of the talk.

(basically, this is “one-point-per-slide” for the rest of the talk)

CMU 15-418/618, Spring 2017

Examples of good slide titles

GPUs shade quad fragments (2x2 pixel blocks) Greedy SRDH build optimizes over
partitions and traversal policies

Texture data Quad fragment

SAH:

(S00,to0) forall (partitions in set-of-partitions)
o ..evaluate SAH and pick min..

SRDH:
forall (partitions in set-of-partitions)

forall (traversalKernels in set-of-kernels)
® ® ..evaluate SRDH and pick min..

(s10,t10) (s11,t11)
SRDH(R,L,xr)=(1- x(r)H(L,r))|R|+(1- x(r)H(R,r))|L|

use differences between neighboring
texture coordinates to estimate derivatives

AAC IS AN APPROXIMATION TO THE TRUE . o
AGGLOMERATIVE CLUSTERING SOLUTION. The reason for meaningful slide titles is

convenience and clarity for the audience

Computation graph: Primitive partitioning:

Audience: “Why is the speaker telling me
this again?”
) (Why before what.)
@ @ @y @3 AA

CMU 15-418/618, Spring 2017

10.

Provide evidence that you've done a good job
(You have successfully applied principles learned in
418/618 to a problem of your choosing)

(This is a 418/618 specific tip, but it certainly generalizes to other contexts as well.)

CMU 15-418/618, Spring 2017

Evaluating results

(Show your system is fast, or efficient, or as good as it can be given what
you've learned in this class ... in other words, that you did a good job)

m Compare against published results
- “Our code is 10% faster than this publication (or this well known
system)”

m Determine a fraction of peak
- “We achieve 80% of peak performance on this machine”

m Be truthful about comparisons between a CUDA implementation
utilizing an entire GPU and single threaded, non-SIMD C program
on a CPU (I'd rather not hear this conclusion: “GPU is 300x faster

than the CPU".)

CMU 15-418/618, Spring 2017

11.

Practice the presentation

CMU 15-418/618, Spring 2017

Practice the presentation

B Given the time constraints, you'll need to be smooth to say
everything you want to say

m To be smooth you'll have to practice

® | hope you rehearse your demo or presentation several times
the night before (in front of a friend or two that’s not in 418)

- It's only a 6 minute talk. So a couple of practice runs are possible in a small
amount of time

CMU 15-418/618, Spring 2017

Course wrap up

CMU 15-418/618, Spring 2017

For the foreseeable future, the primary way to obtain higher
performance computing hardware is through a combination of
increased parallelism and hardware specialization.

PolyMorph Engine 3.0
Vertex Fetch | | Tessellator N Viewport Transform

[[LL]
L L]

Attribute Setup | | Stream Output

1"

Instruction Cache

Instruction Buffer Instruction Buffer
Warp Scheduler Warp Scheduler

D €0 &9 & [

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
o S S 2 .

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

b 4
=
3
3
-
=
=
o

{0 &1 &) (o @ &

LRI REUCTE (LTI -

Core Core Core Core Core Core
Core Core Core Core Core Core

[

[T
Core Core Core Core Core Core

Core Core Core Core Core Core FPGA

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Texture / L1 Cache

Instruction Buffer Instruction Buffer ' GPU Core Pair 182 H
{

Warp Scheduler Warp Scheduler

GPU Core Pair 384 | |

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
b 3 & &

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core | Core | Core | L Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Texture / L1 Cache

96KB Shared Memory

| T e Apple A9
A SN o B S Heterogeneous SoC

NVIDIA Maxwell GPU

i T (single SMM core) . |
32 wide SIMD multi-core CPU + multi-

Intel Xeon Phi core GPU + media ASICs
72 cores, 16-wide SIMD, 4-way multi-threading 2048 CUDA/core threads per SMM

(MU 15-418/618, Spring 2017

Today’s software is surprisingly inefficient
compared to the capability of modern machines

A lot of performance is currently left on the table (increasingly so as machines get
more complex, and parallel processing capability grows)

Extracting this performance stands to provide a notable impact on many compute-
intensive fields (or, more importantly enable new applications of computing!)

Given current software programming systems and tools, understanding how a parallel
machine works is important to achieving high performance.

A major challenge going forward is making it simpler for programmers to extract
performance on these complex machines.

CMU 15-418/618, Spring 2017

This is particularly important given how exciting
(and efficiency-critical) the next generation of
computing applications are likely to be.

CMU 15-418/618, Spring 2017

Key issues we have addressed this semester

|dentifying parallelism

(or conversely, identifying dependencies)

Efficiently scheduling parallelism

1. Achieving good workload balance

2. Overcoming communication constraints:

Bandwidth limits, dealing with latency, synchronization
Exploiting data/computation locality = efficiently managing state!

3. Scheduling under heterogeneity (using the right processor for the job)

We addressed these issues at many scales and in many contexts

Heterogeneous mobile SoC
Single chip, multi-core (PU
Multi-core GPU
CPU+GPU connected via bus
Clusters of machines
Large scale, multi-node supercomputers

CMU 15-418/618, Spring 2017

Thank you to our TAs!

Alex Ravi
Teguh Junhong
Yicheng Tao

CMU 15-418/618, Spring 2017

Call for TAs!

m 15-418/618 is offered in both the Fall (by Mowry, Railing) and in
the Spring (by Randy and I)

B We will be looking for TAs for future offerings of the course!

- This is important, since we need great TAs in this course to be successful

CMU 15-418/618, Spring 2017

Other classes with overlapping topics

Visual Computing Systems (15-769)

Computer architecture (18-447)

Compilers (15-441)

Distributed computing (15-447)

Operating systems (15-410)

Database systems (15-445) (new course next semester Pavlo)

CMU 15-418/618, Spring 2017

Beyond assignments and exams

CMU 15-418/618, Spring 2017

What | see a lot of...

. Works really hard
Amazing CMU to maximize

(S student gradesin (S
classes
High GPA looks
good on resume
Good resume
handed out at (S
job fair
. Student knows
esume gets their stuff
student first- in interview GOOD JOB
round interview (aces fine-grained Woot!

linked list locking
question)

But let’s be honest, this is what really happens...

Amazing (MU Works DOES NOT SLEEP in order to

(S student maximize grades in MANY CS classes
or
A DOUBLE MAJOR
or
ATRIPLE MAJOR

(Most waking hours spent on coursework, tired all the time)

Even more
impressive resume Resume gets Student knows
handed out at (5 student first- their stuff GOO D " 0 B
job fair round interview in interview Woot!

(aces fine-grained
linked list locking
auestion)

(“but man, CMU is a brutal place”)

RULE:

To be really good* at something, you have to be really
talented (you are), AND you have to work really hard at it.

You have to struggle/agonize over it.
You have to immerse yourself init.
You have to think about it all the time.

There are very, very few exceptions to this rule.
(And they are really, really lucky people.)

So this is not a talk urging you to work less. (Sorry.)

* Note: good !=successful. Success also requires fortunate circumstances and luck.

For some of you (but not all): challenging yourself to ace as
many classes as possible may not be the most effective way to
maximize your efforts at CMU and opportunities afterward.

It may not be the best way to get a competitive job.

It may not be the best way to get the coolest jobs.

It may not be the best way to prepare yourself have the most impact in a future job.

There are other ways to demonstrate and prepare yourself for future excellence.
(these other ways are often more challenging than taking extra classes)

ldea 1: wisely manage yourself in classes
In your later years at CMU.

(yes, this is much easier said than done)

Imagine this situation

You are signed up for a normal load of four classes.

One of them is my class, 15-418: Parallel Computer Architecture
and Programming. Woot!

You are considering loading up with a fifth class...
say 15-410, or 15-440...

Lots of options!

= You could do what it takes to get A’s in both classes
(probably middle-of-the-road work due to lack of time)

m What if you gave reasonable effort in my class, resultingina B
(you took my class because you anticipate exposure to the
material might be useful in the future, although you don’t
intend to make a living in parallel programming)? But... this
gave you time to do outstanding work on the assignments and
final project in another class!

The “Ivory-tower” advice

You should find ways to immerse yourself in the projects and ideas you find
most interesting. Itis the best way to learn deeply.

(and that will show up in an interview. “Tell me about your project... wait, you
implemented what?”)

The more practical advice

The really unique opportunities (a.k.a., coolest jobs) in the world tend to come
through people that know you, not by submitting resumes.

You better believe colleagues in industry are asking us about the best students
all the time. (finding good people is hard, and frustrating, for employers)

The best bosses are looking for people that have done special things.

|dea 2: try undergraduate research

The conventional path | was talking about...

Amazing (MU Works DOES NOT SLEEP in order to

(S student maximize grades in MANY CS classes
or
A DOUBLE MAJOR
or
ATRIPLE MAJOR

(Most waking hours spent on coursework, tired all the time)

Even more
impressive resume Resume gets Student knows
handed out at (5 student first- their stuff GOO D " 0 B
job fair round interview in interview Woot!

(aces linked list reversal
question, recalls what a
mantissa is)

(“but man, CMU is a brutal place”)

An alternative path...

Amaz| ng CM U Takes fewer classes, but DOESN'T
(S student SLEEP because he/she does an

amazing project in 15-418. (really
interested in parallel programming)

Student: “Hey Kayvon, | liked your Kayvon: “Yo! You did the coolest work in
class, is there anything | can help 418 in YEARS, you should totally come
with in your research group next help with this project in my group.”

semester?”

Kayvon, to super-awesome friend in W I c KE D

industry: “Hey, you've got to hire this

Student gets awesome experience :

working side-by-side with (MU kid, they know more about parallel GOOD jOB
Ph.D. students and professorS. architecture than’any underg.rad In

Learns way more than in class. the country. They've been doing Woot!

(BUT STILL PROBABLY DOESN'T publishable research on it.”
SLEEP... SO IT GOES)

Kayvon, circa 2002 (junior year at C(MU)

My TA in Professor Hodgins' computer animation class (Ph.D.
student Kiran Bhat) pulled me aside on the last day of class and
told me | should come join the Graphics Lab

Why research (or independent study)?

® You will learn way more about a topic than in any class.

® You think your undergrad peers are amazingly smart? Come see
our Ph.D. students! (you get to work side-by-side with them and
with faculty). Imagine what level you might rise to.

B |t's way more fun to be on the cutting edge. Industry might not
even know about what you are working on. (imagine how much
more valuable you are if you can teach them)

B |t widens your mind as to what is possible.

What my Ph.D. students are working on
these days...

B Generating efficient code from image processing or deep
learning DSLs (Halide Autoscheduler)

m Designing a new shading lanquage for future real-time graphics
pipelines

m Parallel computing platforms for analyzing large video
collections at scale (Scanner: “Spark for video”)

m Designing more efficient DNNs to accelerate evaluation

m Computer graphics tools for theatrical lighting design

And maybe you might like it and want to
go to grad school?

Remember my comment about people...

Without question, the number one way to get into a top grad school is
to receive a strong letter of recommendation from a (MU faculty
member. You get that letter from participating in a research team.

DWIiCletter: (“did well In class” letter) What you get when you ask for
a letter from a faculty member who you didn’t do research with, but
got an ‘A’ in their class. This letter is essentially thrown out by a Ph.D.
admissions committee.

Precomputing Interactive Dynamic Deformable Scenes

I'm no exception: got gentle

Doug L. James and Kayvon Fatshahan
Camegie Mellon Umiversaty

hints from my professors ==

(Note: this was also true in deciding to be a

prOfesso r) (&) Precomputation (b) Reduced dynamaes mode] (¢) Reduced :llumanation model (d) Real-ume samulation

Figure 11 Overview of our approack: (2) Given a2 deformable scene, such as cloth on a user-movable door, we precompute (impulsive)

Subject: Re: recommendations
From: "Jessica Hodgins" .
Date: Fri, November 22, 2002 8:08 am
To: "Doug L. James" (more
Priority: Normal
Options: Yiew Full Header | View Printable Version | Download this as a file

I can do it but I REALLY think that you should be applying for
PhD programs, not master's programs.

Jessica

On Nov 22, 11:08am, Kayvon Fatahalian wrote:

> Subject: recommendations

>

> I have applied to the CS masters program at , and am soliciting

> recommendations to accompany my application. could I ask either of
you to

> send a copy of letters you have drafted for me, either for NSF or (in
Doug's

> case for CMU 5th year) over to
S

as well.

)} Deformed stale geometnes &c
d) The Enal simulation responds

éu’x!';rh.m an observed dyvnamic

focts, and runs in real tme.

Fal Phenomena Animaticn, Phys
bv Based Moceling

I our everyday world, and & ey
pes, clothing, fractured maen-
alistic matural eevirooments. [t
e for real time interactive eevi
iroements may wish to imcorpo
nents foe ipcreased reatism, but
I secondary impetasce s very
uilable. Unfortunately, many re
| potoricusly expensive to sime
¢ ponlisear deformable sysiems
eetally expensive | Bridson et al
me corstrmnts Can e onerous
ew (if any) major video games
deformable physics is a substan
Dlissioes comphicae both rustime
| mleresting deformabie scenes,
ieg physacal models in real-time
Ric real-time amimation of global
xpensive for deformable scenes,
poomputed as casaly as for ngid

¢ & balance between complexity
n types of imteractive deformable
interactions, W be simulated at
1 1abulates state space models of
in & way that effecuvely allows
runtime. To limit storuge costs
the state space models into very
Bl-squares (Karhupen-Loéve) ap-
aralyvsis One might note that e

Research is just one option...

(Despite what many of us biased faculty tell you,
there are many other equally good ones)

Why not start your own project?

Start your own project

Interested in applying technology to a Like it enough to be your own boss?
problem that excites you? Give it a shot!
Consider starting your own company.

There are plenty of independent study (Project Olympus might give you some money.)
opportunities at CMU.
(and there’s funding available) Why go work for Zuckerberg when you can start

a company that kicks his ass?
(or he buys for $1B like Instagram)

TartanHacks e@
ScottyLabs m

Ow\eus

StuCo:

CMU 15-418/618, Spring 2016

There are many
ways
to be
EXCELLENT in CS

at (MU

There are many ways to be excellent in (S at CMU

Take more classes Well-structured effort:

Professors give you the problems,

: you have to solve them
Go beyond what we ask in (great problem solvers get A’s)

your favorite classes

Help redesign a course

Less-structured effort:
You pick the problems to work on.

Lead an independent study

Do research

Create a startup / non-profit

Failure.

Taking on harder (and more open
ended challenges) means you are
more likely to have a hiccup.

The cost of failure?

Go beyond what we ask in class Do research
Create a startup Lead an independent study

Yes, there is a higher likelihood of having a setbacks in these
activities than in a class.

| encourage you to practice some risk taking while at CMU

Getting over fear of temporary* failure to embrace measured
risk is extremely powerful life skill to learn now.

* Let’s be honest here: Failure is not a good thing, but if it leads to changes/learning/improvement that
ultimately lead to success then it’s a positive.

The cost of failure?

You are lucky because you are extremely talented. The
cost of “failure” for (many of you) you is actually much
less than for others because your backup plan s
amazingly good.

Take the shot. If it doesnt work out, you'll try something
else and, you'll probably succeed... or just go get that
pretty darn good job you would have gotten anyway.

Think bigger, think broader

You are fortunate.
You are smart, talented, and hard-working.

You are in an amazing environment at CMU.
(think about the people and projects going on around you)

How can you maximize that opportunity while you are here?
The mechanisms are in place, if they aren’t, we’ll help you create them:

Course projects
Research
Independent study
Entrepreneurship

The biggest sign you are in the “real-world” isn't when you are paying your
own bills, showing up to work on time, or ensuring your code passes
regressions... it is asking your own questions and making your own decisions.

And there’s a lot more to decide on at CMU than classes.

Or in other words*...
there are “grades” you can get at CMU
that are much higher than A’.

* More precisely, Dave Eckhardt’s words

Kayvon'’s
Final
Claim

It is far more difficult (and creative) to deliver on a
“once in a few years” final project in 15-418/618 than it
is to take an

Ditto for pursuits like senior theses, independent
study, starting a company...

The world rewards initiative.

The world rewards risk takers.

(Force yourself to get comfortable with risk taking and the
possibility of occasional failure while at CMU.)

Many people are really smart.
Many people can work really hard.

Far fewer people can pick the right problems to work on and
develop the confidence and creativity to lead.

Thanks for being a great class!

Good luck on projects. Expectations are high.

See you a week from Friday!

