
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2017

Lecture 28:

Course Wrap Up &
Project Presentation Tips

 CMU 15-418/618, Spring 2017

Tunes

OneRepublic
Counting Stars

(Native)

“Lately, I've been, I've been losing sleep
Dreaming about the things that we could be…”

- everyone

 CMU 15-418/618, Spring 2017

Today
▪ Exam 2 discussion

▪ Parallelism competition hints/guidelines

▪ Wrap up: a few final comments about class topics

 CMU 15-418/618, Spring 2017

Announcements
▪ Please fill out course evaluations, it helps make the course better

▪ Final project presentations: Friday May 12th
- 2pm on Wed May 10th staff + judges start looking at your project pages to pick

finalists
- 20 finalist teams announced at 2pm on Thursday

- Parallelism Competition:
- 8:30-11:30am, Rashid Auditorium (with breakfast and snacks)
- Everyone is expected to attend to support their classmates.

- Additional project presentations:
- Presentations the rest of the day in Smith Hall to course staff

▪ Project reports due at 11:59pm that evening, no late days

 CMU 15-418/618, Spring 2017

Exam 2 discussion (no slides)

 CMU 15-418/618, Spring 2017

Final projects

 CMU 15-418/618, Spring 2017

Presentation day

▪ Yes, presentations are considered when determining your
overall project grade, but in general Friday is a celebration of
finishing the course: the “Parallelism Competition” and all the
project presentations are chance to talk about the neat work
you have done.

 CMU 15-418/618, Spring 2017

Presentation format
▪ Each group has six minutes to talk

- Plus 1-2 minutes for questions from judges

▪ Presentation format is up to you: slides, live demo, etc.
- Start with name(s) of students, title of project on a title slide

- Both students in a 2-person group should speak

▪ Present off your own laptop, or make arrangements with staff

 CMU 15-418/618, Spring 2017

Project presentation tips

 CMU 15-418/618, Spring 2017

Benefit TO YOU of a good (clear) talk *
▪ Non-linear increase in the impact of your work

- Others are more likely to remember and build upon your work
- Others are more likely to come up to you after the talk

▪ Clarity is highly prized: the audience remembers you
- “Hey man, that was a great talk... are you looking for a job

anytime soon?”

 CMU 15-418/618, Spring 2017

Your #1 priority should be to be clear, rather
than be comprehensive
(your project writeup is the place for completeness)

Everything you say should be understandable by someone in this class.
If you don’t think the audience will understand, leave it out (or change).
(spend the time saying something we will understand)

This will be much harder than it seems.

Here are some tips to help.

 CMU 15-418/618, Spring 2017

1.
Put yourself in your audience’s shoes

This is a major challenge for most technical speakers. (including professors)

(Tip: recite a sentence out loud to yourself. Do you really expect someone
who has not been working with you everyday on the project to understand

what you just said?)

 CMU 15-418/618, Spring 2017

Consider your audience

▪ Everyone in the audience knows about parallel programming
- CS terminology/concepts need not defined

▪ Most of the audience knows little-to-nothing about the
specific application domain or problem you are trying to solve
- Application-specific terminology should be defined or avoided

▪ The judges (and course staff) are trying to figure out the
“most interesting” thing that you found out or accomplished
(your job is to define most interesting for them)

 CMU 15-418/618, Spring 2017

2.
Pick a focus.

Figure out what you want to say. Then say it.
(and nothing more)

 A good speaking philosophy: “every sentence matters”
Tip: for each sentence, ask yourself:

 What is the point I am trying to make?

Did the sentence I just say make that point?

 CMU 15-418/618, Spring 2017

Pick a focus
▪ In this class, different projects should stress different results

▪ Some projects may wish to show a flashy demo and describe how it works
(proof by “it works”)

▪ Other projects may wish to show a sequence of graphs (path of
progressive optimization) and describe the optimization that took system
from performance A to B to C

▪ Other projects may wish to clearly contrast parallel CPU vs. parallel GPU
performance for a workload

Your job is not to explain what you did, but to explain what
you think we should know

 CMU 15-418/618, Spring 2017

Ignoring every sentence matters
Never ever, ever, ever do this!

 CMU 15-418/618, Spring 2017

The audience prefers not to think (much)

3.

 CMU 15-418/618, Spring 2017

The audience has a finite supply of mental effort

▪ The audience does not want to burn mental effort about things
you know and can just tell them.
- They want to be led by hand through the major steps of your story

- They do not want to interpret any of your figures or graphs, they want to be
directly told how to interpret them (e.g., what to look for in a graph).

▪ The audience does want to spend their energy thinking about:
- Potential problems with what you did (did you consider all edge cases? Is your

evaluation methodology sound? Is this a good platform for this workload?)

- Implications of your approach to other things

- Connections to their own work or project

 CMU 15-418/618, Spring 2017

Set up the problem.
Establish inputs, outputs, and constraints

(goals and assumptions)

4.

 CMU 15-418/618, Spring 2017

Establish goals and assumptions early
▪ “Given these inputs, we wish to generate these outputs…”

▪ We are working under the following constraints:
- Example: the outputs should have these properties
- Example: the algorithm...

- Should be real time
- Must interoperate with this existing library which we cannot change
- Must ascribe to this interface (because it’s widely used)

- Example: the system…
- Need not compile all of Python, only this subset… (because for my domain

that’s good enough)
- Should realize about 90% of the performance of hand-tuned code, with

much lower development time

 CMU 15-418/618, Spring 2017

Basics of problem setup
▪ What is the computation performed (or system built)?

- What are the inputs? What are the outputs?

▪ Why does this problem stand to benefit from optimization?
- “Real-time performance could be achieved”

- “Researchers could run many more trials, changing how science is done”

- “It is 90% of the execution time in this particular system”

▪ Why is it hard? (What made your project interesting? What
should we reward you for?)
- What turned out to be the hardest part of the problem?

- This may involve describing a few key characteristics of the workload (e.g.,
overcoming divergence, increasing arithmetic intensity)

 CMU 15-418/618, Spring 2017

How to describe a system

5.

 CMU 15-418/618, Spring 2017

How to describe a system
▪ Start with the nouns (the key boxes in a diagram)

- Major components (processors, memories, interconnects, etc.)

- Major entities (particles, neighbor lists, pixels, pixel tiles, features, etc.)

- What is state in the system?

▪ Then describe the verbs
- Operations that can be performed on the state (update particle

positions, compute gradient of pixels, traverse graph, etc.)

- Operations produce, consume, or transform entities

 CMU 15-418/618, Spring 2017

Surprises* are almost always bad:
Say where you are going and why you must go there

before you say what you did.

6.

* I am referring to surprises in talk narrative and/or exposition. A surprising result is great.

 CMU 15-418/618, Spring 2017

Give the why before the what
▪ Why provides the listener context for...

- Compartmentalizing: assessing how hard they should pay attention (is this a critical
idea, or just an implementation detail?). Especially useful if they are getting lost.

- Understanding how parts of the talk relate (“Why is the speaker now introducing a
new optimization approach?”)

▪ In the algorithm/system description section:
- “We need to first establish some terminology…”
- “Even though I just told you our solution to X, the problem we still haven’t solved is...”
- “Now that we have defined a cost metric we need a method to minimize it...”

▪ In the results section:
- Speaker: “Key questions to ask about our approach are...”
- Listener: “Thanks! I agree, those are good questions.

Let’s see what the results say!”

 CMU 15-418/618, Spring 2017

Always, always, always
explain any figure or graph

(remember, the audience does not want to think)

7.

 CMU 15-418/618, Spring 2017

Explain every figure
▪ Explain every visual element used in the figure (never make the audience decode a figure)

▪ Refer to highlight colors explicitly (explain why the visual element is highlighted)

Example voice over: “Here I’m showing you a pixel grid, a triangle, and the location of four sample points at each
pixel. Sample points falling within the triangle are colored red.

 CMU 15-418/618, Spring 2017

Explain every figure
▪ Lead the listener through the key points of the figure

▪ Useful phrase: “As you can see...”
- It’s like verbal eye contact. It keeps the listener engaged and makes the listener happy... “Oh yeah, I can

see that! I am following this talk! Yippee!”

Example voice over: “Now I’m showing you two adjacent triangles, and I’m coloring pixels according to the number
of shading computations that occur at each pixel as a result of rendering these two triangles. As you can see in the
light blue region, pixels near the boundary of the two triangles get shaded twice.

 CMU 15-418/618, Spring 2017

▪ May start with a general intro of what the graph will address.
▪ Then describe the axes (your axes better have labels!)
▪ Then describe the one point that you wish to make with this results slide (more on this later!)

Explain every results graph

Example voice over: “Our first question was about performance: how fast is the auto scheduler compared to experts? And we found out that it’s quite
good. This figure plots the performance of the autoscheduler compared to that of expert code. So expert code is 1. Faster code is to the right. As you
can see, the auto scheduler is within 10% of the performance of the experts in many cases, and always within a factor of 2.

 CMU 15-418/618, Spring 2017

In the results section:
One point per slide!
One point per slide!
One point per slide!

(and the point is the title of the slide!!!)

8.

 CMU 15-418/618, Spring 2017

 CMU 15-418/618, Spring 2017

Place the point of the
slide in the title:

It provides context for
interpreting the graph

(Listener: “Let me see if I can
verify the point in the graph
to check my understanding”)

Another example of the
“audience prefers not to
think” principle

 CMU 15-418/618, Spring 2017

Bad examples of results slides
▪ Notice how you (as an audience member)

are working to interpret the trends in
these graphs

- You are asking: what do these results say?

▪ You just want to be told what to look for

 CMU 15-418/618, Spring 2017

Titles matter.

If you read the titles of your talk all the way through, it should be a
great summary of the talk.

(basically, this is “one-point-per-slide” for the rest of the talk)

9.

 CMU 15-418/618, Spring 2017

Examples of good slide titles

The reason for meaningful slide titles is
convenience and clarity for the audience

Audience: “Why is the speaker telling me
this again?”

(Why before what.)

 CMU 15-418/618, Spring 2017

Provide evidence that you’ve done a good job
(You have successfully applied principles learned in

418/618 to a problem of your choosing)

10.

(This is a 418/618 specific tip, but it certainly generalizes to other contexts as well.)

 CMU 15-418/618, Spring 2017

Evaluating results

▪ Compare against published results
- “Our code is 10% faster than this publication (or this well known

system)”

▪ Determine a fraction of peak
- “We achieve 80% of peak performance on this machine”

▪ Be truthful about comparisons between a CUDA implementation
utilizing an entire GPU and single threaded, non-SIMD C program
on a CPU (I’d rather not hear this conclusion: “GPU is 300x faster
than the CPU”.)

(Show your system is fast, or efficient, or as good as it can be given what
you’ve learned in this class … in other words, that you did a good job)

 CMU 15-418/618, Spring 2017

Practice the presentation

11.

 CMU 15-418/618, Spring 2017

Practice the presentation

▪ Given the time constraints, you’ll need to be smooth to say
everything you want to say

▪ To be smooth you’ll have to practice

▪ I hope you rehearse your demo or presentation several times
the night before (in front of a friend or two that’s not in 418)
- It’s only a 6 minute talk. So a couple of practice runs are possible in a small

amount of time

 CMU 15-418/618, Spring 2017

Course wrap up

 CMU 15-418/618, Spring 2017

For the foreseeable future, the primary way to obtain higher
performance computing hardware is through a combination of
increased parallelism and hardware specialization.

Intel Xeon Phi
72 cores, 16-wide SIMD, 4-way multi-threading

NVIDIA Maxwell GPU
(single SMM core)

32 wide SIMD
2048 CUDA/core threads per SMM

Apple A9
Heterogeneous SoC

multi-core CPU + multi-
core GPU + media ASICs

FPGA
(reconfigurable logic)

GeForce GTX 980 Whitepaper

GM204 HARDWARE ARCHITECTURE

IN-DEPTH

8

from 32 to 64. Again, thanks to the added benefit of higher clocks, pixel fill-rate is actually more than

double that of GTX 680: 72 Gpixels/sec for GTX 980 versus 32.2 Gpixels/sec for GTX 680.

The memory subsystem has also been significantly revamped. GTX 980’s memory clock is over 15%
higher than GTX 680, and GM204’s cache is larger and more efficient than Kepler’s design, reducing the
number of memory requests that have to be made to DRAM. Improvements in our implementation of

memory compression provide a further benefit in reducing DRAM traffic—effectively amplifying the raw

DRAM bandwidth in the system.

Maxwell Streaming Multiprocessor

The SM is the heart of our GPUs. Almost

every operation flows through the SM at

some point in the rendering pipeline.

Maxwell GPUs feature a new SM that’s
been designed to provide dramatically

improved performance per watt than prior

GeForce GPUs.

Compared to GPUs based on our Kepler

architecture, Maxwell’s new SMM design

has been reconfigured to improve

efficiency. Each SMM contains four warp

schedulers, and each warp scheduler is

capable of dispatching two instructions per

warp every clock. Compared to Kepler’s
scheduling logic, we’ve integrated a

number of improvements in the scheduler

to further reduce redundant re-

computation of scheduling decisions,

improving energy efficiency. We’ve also
integrated a completely new datapath

organization. Whereas Kepler’s SM shipped
with 192 CUDA Cores—a non-power-of-two

organization—the Maxwell SMM is

partitioned into four distinct 32-CUDA core

processing blocks (128 CUDA cores total

per SM), each with its own dedicated

resources for scheduling and instruction

buffering. This new configuration in

Maxwell aligns with warp size, making it

easier to utilize efficiently and saving area

Figure 3: GM204 SMM Diagram (GM204 also features 4 DP units per
SMM, which are not depicted on this diagram)

CPU
core

CPU
core

CPU
core

CPU
core

Integrated
Gen9 GPU

graphics +
media

Intel Core i7 CPU + integrated GPU and media

 CMU 15-418/618, Spring 2017

Today’s software is surprisingly inefficient
compared to the capability of modern machines

A lot of performance is currently left on the table (increasingly so as machines get
more complex, and parallel processing capability grows)

Extracting this performance stands to provide a notable impact on many compute-
intensive fields (or, more importantly enable new applications of computing!)

Given current software programming systems and tools, understanding how a parallel
machine works is important to achieving high performance.

A major challenge going forward is making it simpler for programmers to extract
performance on these complex machines.

 CMU 15-418/618, Spring 2017

This is particularly important given how exciting
(and efficiency-critical) the next generation of
computing applications are likely to be.

 CMU 15-418/618, Spring 2017

Key issues we have addressed this semester

Identifying parallelism
(or conversely, identifying dependencies)

Efficiently scheduling parallelism
1. Achieving good workload balance

2. Overcoming communication constraints:
Bandwidth limits, dealing with latency, synchronization

Exploiting data/computation locality = efficiently managing state!
3. Scheduling under heterogeneity (using the right processor for the job)

We addressed these issues at many scales and in many contexts
Heterogeneous mobile SoC
Single chip, multi-core CPU

Multi-core GPU
CPU+GPU connected via bus

Clusters of machines
Large scale, multi-node supercomputers

 CMU 15-418/618, Spring 2017

Thank you to our TAs!

Alex

Teguh

Yicheng

Ravi

Junhong

Anant

Tao

Riya

 CMU 15-418/618, Spring 2017

Call for TAs!
▪ 15-418/618 is offered in both the Fall (by Mowry, Railing) and in

the Spring (by Randy and I)

▪ We will be looking for TAs for future offerings of the course!
- This is important, since we need great TAs in this course to be successful

 CMU 15-418/618, Spring 2017

Other classes with overlapping topics

▪ Visual Computing Systems (15-769)

▪ Computer architecture (18-447)

▪ Compilers (15-441)

▪ Distributed computing (15-447)

▪ Operating systems (15-410)

▪ Database systems (15-445) (new course next semester Pavlo)

 CMU 15-418/618, Spring 2017

Beyond assignments and exams

What I see a lot of…

Amazing CMU
CS student

Works really hard
to maximize
grades in CS

classes

GOOD JOB

High GPA looks
good on resume

Good resume
handed out at CS

job fair

Resume gets
student first-

round interview

Student knows
their stuff

in interview
(aces fine-grained
linked list locking

question)

Woot!

Amazing CMU
CS student

Works DOES NOT SLEEP in order to
maximize grades in MANY CS classes

or
A DOUBLE MAJOR

or
A TRIPLE MAJOR

GOOD JOB
Even more

impressive resume
handed out at CS

job fair

Resume gets
student first-

round interview

Student knows
their stuff

in interview
(aces fine-grained
linked list locking

question)

Woot!

(Most waking hours spent on coursework, tired all the time)

(“but man, CMU is a brutal place”)

But let’s be honest, this is what really happens…

Discussion:
Why?

RULE:
To be really good* at something, you have to be really

talented (you are), AND you have to work really hard at it.

You have to struggle/agonize over it.
You have to immerse yourself in it.

You have to think about it all the time.

There are very, very few exceptions to this rule.
(And they are really, really lucky people.)

* Note: good != successful. Success also requires fortunate circumstances and luck.

So this is not a talk urging you to work less. (Sorry.)

HYPOTHESIS:
For some of you (but not all): challenging yourself to ace as

many classes as possible may not be the most effective way to
maximize your efforts at CMU and opportunities afterward.

It may not be the best way to get a competitive job.

It may not be the best way to get the coolest jobs.

It may not be the best way to prepare yourself have the most impact in a future job.

There are other ways to demonstrate and prepare yourself for future excellence.
(these other ways are often more challenging than taking extra classes)

Idea 1: wisely manage yourself in classes
in your later years at CMU.

(yes, this is much easier said than done)

Imagine this situation

You are signed up for a normal load of four classes.

One of them is my class, 15-418: Parallel Computer Architecture
and Programming. Woot!

You are considering loading up with a fifth class…
say 15-410, or 15-440...

Lots of options!

▪ You could do what it takes to get A’s in both classes
(probably middle-of-the-road work due to lack of time)

▪ What if you gave reasonable effort in my class, resulting in a B
(you took my class because you anticipate exposure to the
material might be useful in the future, although you don’t
intend to make a living in parallel programming)? But... this
gave you time to do outstanding work on the assignments and
final project in another class!

You should find ways to immerse yourself in the projects and ideas you find
most interesting. It is the best way to learn deeply.
(and that will show up in an interview. “Tell me about your project... wait, you
implemented what?”)

The “ivory-tower” advice

The more practical advice
The really unique opportunities (a.k.a., coolest jobs) in the world tend to come
through people that know you, not by submitting resumes.

You better believe colleagues in industry are asking us about the best students
all the time. (finding good people is hard, and frustrating, for employers)

The best bosses are looking for people that have done special things.

Idea 2: try undergraduate research

Amazing CMU
CS student

Works DOES NOT SLEEP in order to
maximize grades in MANY CS classes

or
A DOUBLE MAJOR

or
A TRIPLE MAJOR

GOOD JOB
Even more

impressive resume
handed out at CS

job fair

Resume gets
student first-

round interview

Student knows
their stuff

in interview
(aces linked list reversal
question, recalls what a

mantissa is)

Woot!

(Most waking hours spent on coursework, tired all the time)

(“but man, CMU is a brutal place”)

The conventional path I was talking about…

Amazing CMU
CS student

Takes fewer classes, but DOESN’T
SLEEP because he/she does an

amazing project in 15-418. (really
interested in parallel programming)

WICKED
GOOD JOB

Student: “Hey Kayvon, I liked your
class, is there anything I can help
with in your research group next

semester?”

Woot!

Kayvon: “Yo! You did the coolest work in
418 in YEARS, you should totally come

help with this project in my group.”

Student gets awesome experience
working side-by-side with CMU
Ph.D. students and professors.
Learns way more than in class.
(BUT STILL PROBABLY DOESN’T
SLEEP… SO IT GOES)

Kayvon, to super-awesome friend in
industry: “Hey, you’ve got to hire this
kid, they know more about parallel
architecture than any undergrad in
the country. They’ve been doing
publishable research on it.”

An alternative path…

Kayvon, circa 2002 (junior year at CMU)
My TA in Professor Hodgins’ computer animation class (Ph.D.
student Kiran Bhat) pulled me aside on the last day of class and
told me I should come join the Graphics Lab

Kiran

Why research (or independent study)?

▪ You will learn way more about a topic than in any class.

▪ You think your undergrad peers are amazingly smart? Come see
our Ph.D. students! (you get to work side-by-side with them and
with faculty). Imagine what level you might rise to.

▪ It’s way more fun to be on the cutting edge. Industry might not
even know about what you are working on. (imagine how much
more valuable you are if you can teach them)

▪ It widens your mind as to what is possible.

What my Ph.D. students are working on
these days…

▪ Generating efficient code from image processing or deep
learning DSLs (Halide Autoscheduler)

▪ Designing a new shading language for future real-time graphics
pipelines

▪ Parallel computing platforms for analyzing large video
collections at scale (Scanner: “Spark for video”)

▪ Designing more efficient DNNs to accelerate evaluation

▪ Computer graphics tools for theatrical lighting design

And maybe you might like it and want to
go to grad school?

Remember my comment about people...

Without question, the number one way to get into a top grad school is
to receive a strong letter of recommendation from a CMU faculty
member. You get that letter from participating in a research team.

DWIC letter: (“did well In class” letter) What you get when you ask for
a letter from a faculty member who you didn’t do research with, but
got an ‘A‘ in their class. This letter is essentially thrown out by a Ph.D.
admissions committee.

I’m no exception: got gentle
hints from my professors
(Note: this was also true in deciding to be a
professor)

Research is just one option…

(Despite what many of us biased faculty tell you,
there are many other equally good ones)

Why not start your own project?

Start your own project

Interested in applying technology to a
problem that excites you? Give it a shot!

There are plenty of independent study
opportunities at CMU.

(and there’s funding available)

Like it enough to be your own boss?

Consider starting your own company.
(Project Olympus might give you some money.)

Why go work for Zuckerberg when you can start
a company that kicks his ass?

(or he buys for $1B like Instagram)

My
Big
Point

 CMU 15-418/618, Spring 2016

There

 CMU 15-418/618, Spring 2016

are many
ways
to be
EXCELLENT in CS
at CMU

Take more classes

Go beyond what we ask in
your favorite classes

Do research

Lead an independent study

Create a startup / non-profit

There are many ways to be excellent in CS at CMU

Well-structured effort:
Professors give you the problems,
you have to solve them
(great problem solvers get A’s)

Less-structured effort:
You pick the problems to work on.

Help redesign a course

But…
Failure.
Taking on harder (and more open
ended challenges) means you are
more likely to have a hiccup.

The cost of failure?

Yes, there is a higher likelihood of having a setbacks in these
activities than in a class.

I encourage you to practice some risk taking while at CMU

Getting over fear of temporary* failure to embrace measured
risk is extremely powerful life skill to learn now.

Go beyond what we ask in class Do research
Lead an independent studyCreate a startup

* Let’s be honest here: Failure is not a good thing, but if it leads to changes/learning/improvement that
 ultimately lead to success then it’s a positive.

The cost of failure?

You are lucky because you are extremely talented. The
cost of “failure” for (many of you) you is actually much
less than for others because your backup plan is
amazingly good.

Take the shot. If it doesn’t work out, you’ll try something
else and, you’ll probably succeed... or just go get that
pretty darn good job you would have gotten anyway.

Think bigger, think broader
You are fortunate.

You are smart, talented, and hard-working.
You are in an amazing environment at CMU.
(think about the people and projects going on around you)

How can you maximize that opportunity while you are here?
The mechanisms are in place, if they aren’t, we’ll help you create them:

Course projects
Research

Independent study
Entrepreneurship

The biggest sign you are in the “real-world” isn’t when you are paying your
own bills, showing up to work on time, or ensuring your code passes

regressions... it is asking your own questions and making your own decisions.

And there’s a lot more to decide on at CMU than classes.

Or in other words*…
there are “grades” you can get at CMU

that are much higher than A’s.

* More precisely, Dave Eckhardt’s words

 CMU 15-418/618, Spring 2017

Kayvon’s
Final
Claim

 CMU 15-418/618, Spring 2017

It is far more difficult (and creative) to deliver on a
“once in a few years” final project in 15-418/618 than it
is to take an extra class.

Ditto for pursuits like senior theses, independent
study, starting a company...

 CMU 15-418/618, Spring 2017

The world rewards initiative.

The world rewards risk takers.
(Force yourself to get comfortable with risk taking and the
possibility of occasional failure while at CMU.)

Many people are really smart.
Many people can work really hard.
Far fewer people can pick the right problems to work on and
develop the confidence and creativity to lead.

 CMU 15-418/618, Spring 2017

Thanks for being a great class!

Good luck on projects. Expectations are high.

See you a week from Friday!

