
Parallel Computer Architecture and Programming
CMU / 清华⼤大学, Summer 2017

Lecture 8:

GPU Architecture &
CUDA Programming

CMU / 清华⼤大学, Summer 2017Ritan Park

CMU / 清华⼤大学, Summer 2017

Today

▪ History: how graphics processors, originally designed to
accelerate 3D games like Quake and Starcraft, evolved into
highly parallel compute engines for a broad class of
applications like:

- deep learning
- computer vision
- scientific computing

▪ Programming GPUs using the CUDA language

▪ A more detailed look at GPU architecture

CMU / 清华⼤大学, Summer 2017

Recall basic GPU architecture

Memory
DDR5 DRAM

(capacity: a few GB)

~150-300 GB/sec
(high end GPUs)

GPU
Multi-core chip
SIMD execution within a single core (many execution units performing the same instruction)
Multi-threaded execution on a single core (multiple threads executed concurrently by a core)

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

CMU / 清华⼤大学, Summer 2017

Graphics 101 + GPU history
(for fun)

CMU / 清华⼤大学, Summer 2017

Image credit: Henrik Wann Jensen

Input: description of a scene:
3D surface geometry (e.g., triangle mesh)

surface materials, lights, camera, etc.

Output: image of the scene

Simple definition of rendering task: computing how each triangle in 3D
mesh contributes to appearance of each pixel in the image?

What GPUs were originally designed to do:
3D rendering

CMU / 清华⼤大学, Summer 2017

What GPUs are still designed to do

Unreal Engine Kite Demo (Epic Games 2015)

Real-time (30 fps) on a high-end GPU

CMU / 清华⼤大学, Summer 2017

What GPUs are still designed to do

[Ryse: Son of Rome: 2013]

CMU / 清华⼤大学, Summer 2017

The 3D graphics workload

CMU / 清华⼤大学, Summer 2017

Tip: how to explain “a system”

▪ Step 1: describe the things (key entities) that are manipulated
by the system
- The nouns

CMU / 清华⼤大学, Summer 2017

Vertices
(points in space)

Primitives
(e.g., triangles, points, lines)

1

2

3

4

Real-time graphics primitives (entities)
Represent surface as a 3D triangle mesh

CMU / 清华⼤大学, Summer 2017

Vertices
(points in space)

Primitives
(e.g., triangles, points, lines)

Pixels (in an image)

1

2

3

4

Fragments

Real-time graphics primitives (entities)

CMU / 清华⼤大学, Summer 2017

How to explain “a system”

▪ Step 1: describe the things (key entities) that are manipulated
by the system
- The nouns

▪ Step 2: describe the operations the system performs on these
entities
- The verbs

CMU / 清华⼤大学, Summer 2017

Rendering a picture
Input: a list of vertices in 3D space
(and their connectivity into primitives)

list_of_positions	=	{	
				v0x,	v0y,	v0z,		
				v1x,	v1y,	v1x,	
				v2x,	v2y,	v2z,	
				v3x,	v3y,	v3x	
		};	

Example: every three vertices defines a triangle

triangle 0 = {v0, v1, v2}
triangle 1 = {v1, v2, v3}

Vertex Generation

3D vertex stream

Input vertex
buffer

CMU / 清华⼤大学, Summer 2017

Rendering a picture
Step 1: given a scene camera position/orientation
in 3D, compute where the vertices lie on screen

v1

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Input vertex
buffer

v0

v2
v3

v0

v1

v2

v3

CMU / 清华⼤大学, Summer 2017

Rendering a picture
Step 2: group vertices into primitives

t0 t1

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Input vertex
buffer

v1

v0

v2
v3

Primitive stream
(triangles with
projected vertices)

CMU / 清华⼤大学, Summer 2017

Rendering a picture
Step 3: generate one fragment for each pixel a
primitive overlaps

t0 t1

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Fragment Generation
(“Rasterization”)

Fragment stream

Input vertex
buffer

Primitive stream
(triangles with
projected vertices)

CMU / 清华⼤大学, Summer 2017

Rendering a picture
Step 4: compute color of primitive for each
fragment (based on a description of surface
materials and scene lighting) Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Fragment Generation
(“Rasterization”)

Fragment stream

Fragment Processing

Colored fragment
stream

Input vertex
buffer

Primitive stream
(triangles with
projected vertices)

CMU / 清华⼤大学, Summer 2017

Rendering a picture
Step 5: put color of the “closest fragment”
to the camera in the output image

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Fragment Generation
(“Rasterization”)

Fragment stream

Fragment Processing

Colored fragment
stream

Pixel Operations

Output image
buffer

(pixels)

Input vertex
buffer

Primitive stream
(triangles with
projected vertices)

CMU / 清华⼤大学, Summer 2017

Real-time graphics pipeline

Abstracts the process of rendering a
picture as a sequence of operations on
vertices, primitives, fragments, and pixels. Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Fragment Generation
(“Rasterization”)

Fragment stream

Fragment Processing

Colored fragment
stream

Pixel Operations

Output image
buffer

(pixels)

Input vertex
buffer

Primitive stream
(triangles with
projected vertices)

CMU / 清华⼤大学, Summer 2017

Fragment processing computations simulate
reflection of light off of real-world materials

Example materials:

Images from Matusik et al. SIGGRAPH 2003

CMU / 清华⼤大学, Summer 2017

Early graphics programming (OpenGL API)

▪ Graphics programming APIs provided the programmer with
mechanisms to set parameters of scene lights and materials

▪ glLight(light_id,	parameter_id,	parameter_value)	

- Examples of light parameters: color, position, direction

▪ glMaterial(face,	parameter_id,	parameter_value)	

- Examples of material parameters: color, shininess

CMU / 清华⼤大学, Summer 2017

Great diversity of materials and lights in the world!

CMU / 清华⼤大学, Summer 2017

Graphics shading languages
▪ Allow application to extend the functionality of the

graphics pipeline by specifying materials and lights
programmatically!
- Support diversity in materials
- Support diversity in lighting conditions

▪ Programmer provides mini-programs (“shaders”)
that define pipeline logic for certain stages
- Pipeline executes shader function for all

elements of input stream

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Primitive stream

Fragment Generation
(“Rasterization”)

Fragment stream

Fragment Processing

Colored fragment
stream

Pixel Operations

Output image
buffer

(pixels)

Input vertex
buffer

CMU / 清华⼤大学, Summer 2017

Example fragment shader program

uniform	sampler2D	myTexture;
uniform	float3	lightDir;	
varying	vec3	norm;	
varying	vec2	uv;

void	myFragmentShader()
{
		vec3	kd	=	texture2D(myTexture,	uv);
		kd	*=	clamp(dot(lightDir,	norm),	0.0,	1.0);
		return	vec4(kd,	1.0);			
}	

myTexture is a texture map

Defines logic of fragment processing stage
Run once per fragment (per pixel covered by a triangle)

read-only global variables

per-fragment inputs

per-fragment output: RGBA surface color at pixel

“fragment shader”
(a.k.a kernel function invoked for each
element of input fragment stream)

* Syntax/details of this code not important to this class.
 What is important is that a fragment shader is a pure function invoked on each element from a stream of inputs.

Code below is written in OpenGL shading language (GLSL): *

CMU / 清华⼤大学, Summer 2017

Shaded result
Image contains output of myFragmentShader for each pixel covered by surface
(pixels covered by multiple surfaces contain output from surface closest to camera)

CMU / 清华⼤大学, Summer 2017

Why do GPU’s have many high-throughput cores?

Memory
DDR5 DRAM

(a few GB)

~150-300 GB/sec
(high end GPUs)

GPU

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

Many SIMD, multi-threaded cores provide efficient execution of vertex and
fragment kernels

CMU / 清华⼤大学, Summer 2017

Observation circa 2001-2003
GPUs are very fast processors for performing the same computation (shader programs) in
parallel on large collections of data (streams of vertices, fragments, and pixels)

Wait a minute! That sounds a lot like
data-parallelism to me! I remember
data-parallelism from exotic
supercomputers in the 90s.

And every year GPUs are getting faster
because more transistors = more
parallelism.

CMU / 清华⼤大学, Summer 2017

Hack! early GPU-based scientific computation

Render 2 triangles that exactly cover screen
(one shader computation per pixel = one shader computation output image element)

v0=(0,0) v1=(512,0)

v2=(512, 512)v3=(0, 512)
We now can use the GPU like a data-parallel
programming system.

Fragment shader function is mapped over
512 x 512 element collection.

Hack!

Set graphics pipeline output image size to be output array size
(e.g., 512 x 512)

CMU / 清华⼤大学, Summer 2017

“GPGPU” 2002-2003

Coupled Map Lattice Simulation [Harris 02]

Ray Tracing on Programmable Graphics Hardware [Purcell 02]

Sparse Matrix Solvers [Bolz 03]

GPGPU = “general purpose” computation on GPUs

CMU / 清华⼤大学, Summer 2017

Brook stream programming language (2004)
▪ Stanford graphics lab research project

▪ Goal: abstract GPU hardware as data-parallel processor

kernel	void	scale(float	amount,	float	a<>,	out	float	b<>)	
{	
			b	=	amount	*	a;	
}	

float	scale_amount;	
float	input_stream<1000>;			//	stream	declaration	
float	output_stream<1000>;		//	stream	declaration	

//	omitting	stream	element	initialization...	

//	map	kernel	onto	streams		
scale(scale_amount,	input_stream,	output_stream);

▪ Brook compiler translated generic stream program into
OpenGL commands (such as drawTriangles) and a set of
OpenGL shader programs that could be run on GPUs of the day.

[Buck 2004]

CMU / 清华⼤大学, Summer 2017

GPU compute mode

CMU / 清华⼤大学, Summer 2017

Review: how to run code on a CPU

Lets say a user wants to run a program on a
multi-core CPU…

- OS loads program binary into memory

- OS selects CPU execution context that the main
thread of the program will be assigned to

- OS interrupts processor, prepares execution
context (sets contents of registers, program
counter, etc. to prepare execution context)

- Go!

- Processor begins executing instructions within
the environment maintained in the execution
context.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Multi-core CPU

CMU / 清华⼤大学, Summer 2017

How to run code on a GPU (prior to 2007)

Let’s say a user wants to draw a picture using a GPU…

- Application (via graphics driver) provides GPU vertex
and fragment shader program binaries

- Application sets graphics pipeline parameters
(e.g., output image size)

- Application provides GPU a buffer of vertices

- Application sends GPU a “draw” command:
drawPrimitives(vertex_buffer)

Vertex Processing

Vertex Generation

Primitive Generation

Fragment Generation
(“Rasterization”)

Fragment Processing

Pixel Operations
Output

image buffer
(pixels)

Input vertex
buffer

This was the only interface to GPU hardware.

GPU hardware could only execute graphics
pipeline computations.

CMU / 清华⼤大学, Summer 2017

NVIDIA Tesla architecture (2007)
First alternative, non-graphics-specific (“compute mode”) interface to GPU hardware
(GeForce 8xxx series GPUs)

Let’s say a user wants to run a non-graphics
program on the GPU’s programmable cores…

- Application can allocate buffers in GPU memory
and copy data to/from buffers

- Application (via graphics driver) provides GPU a
single kernel program binary

- Application tells GPU to run the kernel in an
SPMD fashion (“run N instances”)

launch(myKernel,	N)

Aside: interestingly, this is a far simpler
operation than drawPrimitives()

CMU / 清华⼤大学, Summer 2017

CUDA programming language
▪ Introduced in 2007 with NVIDIA Tesla architecture

▪ “C-like” language to express SPMD programs that run on GPUs
using the compute-mode hardware interface

▪ Relatively low-level system: CUDA’s abstractions closely match the
capabilities/performance characteristics of modern GPUs
(design goal: maintain low abstraction distance)

▪ Note: OpenCL is an open standards version of CUDA
- CUDA only runs on NVIDIA GPUs
- OpenCL runs on CPUs and GPUs from many vendors (NVIDIA, AMD, Intel, etc.)
- Almost everything I say about CUDA is also true for OpenCL
- CUDA is better documented and easier to use, so I find it preferable to teach with

CMU / 清华⼤大学, Summer 2017

The plan
1. CUDA programming abstractions
2. CUDA implementation on modern GPUs
3. More detail on GPU architecture

Things to consider throughout this lecture:
- Is CUDA a data-parallel programming model?
- Is CUDA an example of the shared address space model?
- Or the message passing model?
- Can you draw analogies between CUDA concepts and ISPC instances and tasks?

What about C++ threads or pthreads?

CMU / 清华⼤大学, Summer 2017

Clarification (here we go again...)
▪ I am going to describe CUDA abstractions using CUDA

terminology

▪ Specifically, be careful with the use of the term CUDA thread.
A CUDA thread presents a similar abstraction as a pthread in
that both correspond to logical threads of control, but the
implement of a CUDA thread is very different

▪ We will discuss these differences at the end of the lecture

CMU / 清华⼤大学, Summer 2017

Recall basic SPMD programming
▪ Programmer authors one program (one function)

▪ Executes the function multiple times (multiple instances of the function run)

- Behavior of each instance depends on “per instance id”

export	void	saxpy(
			uniform	int	N,	
			uniform	float	a,	
			uniform	float*	x,	
			uniform	float*	y)	
{	
			//	assume	N	%	programCount	=	0	
			for	(uniform	int	i=0;	i<N;	i+=programCount)	
			{	

				int	idx	=	i	+	programIndex;	
						y[idx]	=	a	*	x[idx]	+	y[idx];	
			}	
}

#include	“sinx_ispc.h”	

int	N	=	1024	*	1024;	
float	a	=	1.25;	
float*	x	=	new	float[N];	
float*	y	=	new	float[N];	

//	initialize	x,	y	here	

//	execute	programCount	instances		
//	ISPC	function	
saxpy(N,	a,	x,	y);

Launch programCount instances
of the ISPC function

Behavior of each instance depends
on its unique value of programIndex

Example in ISPC:

CMU / 清华⼤大学, Summer 2017

CUDA programs are SPMD programs
Program instances = “CUDA threads”
CUDA threads organized as a hierarchy: grouped into “thread blocks”
Thread IDs can be up to 3-dimensional (a 2D example below)

const	int	Nx	=	12;	
const	int	Ny	=	6;	

dim3	threadsPerBlock(4,	3,	1);	
dim3	numBlocks(Nx/threadsPerBlock.x,	
															Ny/threadsPerBlock.y,	
															1);	

//	assume	A,	B,	C	are	allocated	Nx	x	Ny	float	arrays	
float	*A,	*B,	*C;	

//	this	call	will	cause	execution	of	12*6=72	CUDA	threads:	
//	This	is	6	thread	blocks	of	4x3=12	threads	each		
matrixAdd<<<numBlocks,	threadsPerBlock>>>(A,	B,	C);

Regular application thread running on CPU (the “host”)

//	kernel	definition	
__global__	void	matrixAdd(float	A[Ny][Nx],	
																										float	B[Ny][Nx],	
																										float	C[Ny][Nx])	
{	
			int	i	=	blockIdx.x	*	blockDim.x	+	threadIdx.x;	
			int	j	=	blockIdx.y	*	blockDim.y	+	threadIdx.y;	

			C[j][i]	=	A[j][i]	+	B[j][i];	
}

CUDA kernel definition

CMU / 清华⼤大学, Summer 2017

Basic CUDA syntax

Each thread computes its overall grid thread id
from its position in its block (threadIdx) and its
block’s position in the grid (blockIdx)

Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have terminated

“Host” code : serial execution
Running as part of normal C/C++
application on CPU

SPMD execution of device kernel function:

const	int	Nx	=	12;	
const	int	Ny	=	6;	

dim3	threadsPerBlock(4,	3,	1);	
dim3	numBlocks(Nx/threadsPerBlock.x,	
															Ny/threadsPerBlock.y,	
															1);	

//	assume	A,	B,	C	are	allocated	Nx	x	Ny	float	arrays	
float	*A,	*B,	*C;	

//	this	call	will	cause	execution	of	12*6=72	CUDA	threads:	
//	This	is	6	thread	blocks	of	4x3=12	threads	each	
matrixAdd<<<numBlocks,	threadsPerBlock>>>(A,	B,	C);

Regular application thread running on CPU (the “host”)

//	kernel	definition	
__global__	void	matrixAdd(float	A[Ny][Nx],	
																										float	B[Ny][Nx],	
																										float	C[Ny][Nx])	
{	
			int	i	=	blockIdx.x	*	blockDim.x	+	threadIdx.x;	
			int	j	=	blockIdx.y	*	blockDim.y	+	threadIdx.y;	

			C[j][i]	=	A[j][i]	+	B[j][i];	
}

CUDA kernel definition
“CUDA device” code: kernel function runs on GPU
(__global__ denotes a CUDA kernel function)

CMU / 清华⼤大学, Summer 2017

Clear separation of host and device code

const	int	Nx	=	12;	
const	int	Ny	=	6;	

dim3	threadsPerBlock(4,	3,	1);	
dim3	numBlocks(Nx/threadsPerBlock.x,	
															Ny/threadsPerBlock.y,	1);	

//	assume	A,	B,	C	are	allocated	Nx	x	Ny	float	arrays	
float	*A,	*B,	*C;	

//	this	call	will	cause	execution	of	12*6=72	CUDA	threads:	
//	This	is	6	thread	blocks	of	4x3=12	threads	each	
matrixAddDoubleB<<<numBlocks,	threadsPerBlock>>>(A,	B,	C);

“Host” code : serial execution on CPU

“Device” code (SPMD execution on GPU)

Separation of execution into host and device code is performed statically by the programmer

__device__	float	doubleValue(float	x)	
{	
			return	2	*	x;	
}	

//	kernel	definition	
__global__	void	matrixAddDoubleB(float	A[Ny][Nx],	
																																	float	B[Ny][Nx],	
																																	float	C[Ny][Nx])	
{	
			int	i	=	blockIdx.x	*	blockDim.x	+	threadIdx.x;	
			int	j	=	blockIdx.y	*	blockDim.y	+	threadIdx.y;	

			C[j][i]	=	A[j][i]	+	doubleValue(B[j][i]);	
}

CMU / 清华⼤大学, Summer 2017

Number of SPMD threads is explicit in program
Number of kernel invocations is not determined by size of data collection
(a kernel launch is not map(kernel, collection) as was the case with graphics shader programming)

const	int	Nx	=	11;		//	not	a	multiple	of	threadsPerBlock.x	
const	int	Ny	=	5;			//	not	a	multiple	of	threadsPerBlock.y	

dim3	threadsPerBlock(4,	3,	1);	
dim3	numBlocks((Nx+threadsPerBlock.x-1)/threadsPerBlock.x,	
															(Ny+threadsPerBlock.y-1)/threadsPerBlock.y,	1);	

//	assume	A,	B,	C	are	allocated	Nx	x	Ny	float	arrays	
float	*A,	*B,	*C;	

//	this	call	will	cause	execution	of	12*6=72	CUDA	threads:	
//	This	is	6	thread	blocks	of	4x3=12	threads	each	
matrixAdd<<<numBlocks,	threadsPerBlock>>>(A,	B,	C);

__global__	void	matrixAdd(float	A[Ny][Nx],	
																										float	B[Ny][Nx],	
																										float	C[Ny][Nx])	
{	
			int	i	=	blockIdx.x	*	blockDim.x	+	threadIdx.x;	
			int	j	=	blockIdx.y	*	blockDim.y	+	threadIdx.y;	
				
			//	guard	against	out	of	bounds	array	access	
			if	(i	<	Nx	&&	j	<	Ny)	
						C[j][i]	=	A[j][i]	+	B[j][i];	
}

Regular application thread running on CPU (the “host”)

CUDA kernel definition

CMU / 清华⼤大学, Summer 2017

CUDA execution model

Host
(serial execution)

CUDA device
(SPMD execution)

Implementation: CPU Implementation: GPU

CMU / 清华⼤大学, Summer 2017

CUDA memory model

Host
(serial execution)

CUDA device
(SPMD execution)

Host memory
address space

Device “global”
memory address space

Implementation: CPU Implementation: GPU

Distinct host and device address spaces

CMU / 清华⼤大学, Summer 2017

memcpy primitive
Move data between address spaces

Host Device

Host memory
address space

Device “global”
memory address space

float*	hostA	=	new	float[N];			//	allocate	buffer	in	host	mem	

//	initialize	host	address	space	buffer	
for	(int	i=0	i<N;	i++)	
			hostA[i]	=	(float)i;	

int	bytes	=	sizeof(float)	*	N;	
float*	deviceA;																	//	allocate	buffer	in		
cudaMalloc(&deviceA,	bytes);				//	device	address	space	

//	initialize	deviceA	
cudaMemcpy(deviceA,	hostA,	bytes,	cudaMemcpyHostToDevice);	

//	note:	directly	accessing	deviceA[i]	is	an	invalid		
//	operation	here	(host	code	cannot	directly	manipulate	
//	contents	of	deviceA	since	deviceA	is	not	a	pointer	
//	to	an	address	in	the	host’s	address	space)

cudaMalloc/cudaFree: allocates/frees
memory in device address space	

cudaMemcpy: copy data between host
and device address spaces

hostA deviceA

CMU / 清华⼤大学, Summer 2017

CUDA device memory model

Per-thread-block
shared memory

Per-thread
private memory

Readable/ writable by
all CUDA threads in a

thread block

Readable/ writable by
one CUDA thread

Device global
memory

Readable/writable
by all CUDA threads

Three distinct types of address spaces visible to kernels

Different address spaces reflect different regions of
locality in the program

As we will soon see, this has important implications to
efficiency of GPU implementations of CUDA:

e.g., how might you schedule threads if you know a priori
that certain threads access the same variables)?

CMU / 清华⼤大学, Summer 2017

CUDA example: 1D convolution

input[0]

output[0] output[1] output[2] output[3] output[4] output[5] output[6] output[7]

input[1] input[2] input[3] input[4] input[5] input[6] input[7] input[8] input[9]

output[i]	=	(input[i]	+	input[i+1]	+	input[i+2])	/	3.f;	

CMU / 清华⼤大学, Summer 2017

1D convolution in CUDA (version 1)
One thread per output element

#define	THREADS_PER_BLK	128	

__global__	void	convolve(int	N,	float*	input,	float*	output)	{	

			int	index	=	blockIdx.x	*	blockDim.x	+	threadIdx.x;		//	thread	local	variable	

			float	result	=	0.0f;		//	thread-local	variable	
			for	(int	i=0;	i<3;	i++)				
					result	+=	input[index	+	i];	

			output[index]	=	result	/	3.f;	
}

each thread writes result
to global memory

each thread computes
result for one element

int	N	=	1024	*	1024	
cudaMalloc(&devInput,	sizeof(float)	*	(N+2));		//	allocate	input	array	in	device	memory	
cudaMalloc(&devOutput,	sizeof(float)	*	N);						//	allocate	output	array	in	device	memory	

//	properly	initialize	contents	of	devInput	here	...	

convolve<<<N/THREADS_PER_BLK,	THREADS_PER_BLK>>>(N,	devInput,	devOutput);

Host code

CUDA Kernel

.

.

input[0] input[N+1]

output[0]

input[129]

output[127] output[N-1]output[N-128]

input[N-128]

CMU / 清华⼤大学, Summer 2017

1D convolution in CUDA (version 2)
One thread per output element: stage input data in per-block shared memory

#define	THREADS_PER_BLK	128	

__global__	void	convolve(int	N,	float*	input,	float*	output)	{	

			__shared__	float	support[THREADS_PER_BLK+2];								//	per-block	variable	
			int	index	=	blockIdx.x	*	blockDim.x	+	threadIdx.x;		//	thread	local	variable	

			support[threadIdx.x]	=	input[index];	
			if	(threadIdx.x	<	2)	{	
						support[THREADS_PER_BLK	+	threadIdx.x]	=	input[index+THREADS_PER_BLK];		
			}	

			__syncthreads();	

			float	result	=	0.0f;		//	thread-local	variable	
			for	(int	i=0;	i<3;	i++)				
					result	+=	support[threadIdx.x	+	i];	

			output[index]	=	result	/	3.f;	
}

All threads cooperatively load
block’s support region from
global memory into shared
memory
(total of 130 load instructions
instead of 3 * 128 load instructions)

barrier (all threads in block)

write result to global
memory

each thread computes
result for one element

int	N	=	1024	*	1024	
cudaMalloc(&devInput,	sizeof(float)	*	(N+2));		//	allocate	array	in	device	memory	
cudaMalloc(&devOutput,	sizeof(float)	*	N);						//	allocate	array	in	device	memory	

//	property	initialize	contents	of	devInput	here	...	

convolve<<<N/THREADS_PER_BLK,	THREADS_PER_BLK>>>(N,	devInput,	devOutput);

Host code

CUDA Kernel

CMU / 清华⼤大学, Summer 2017

CUDA synchronization constructs
▪ __syncthreads()

- Barrier: wait for all threads in the block to arrive at this point

▪ Atomic operations
- e.g., float	atomicAdd(float*	addr,	float	amount)
- CUDA provides atomic operations on both global memory addresses and per-

block shared memory addresses

▪ Host/device synchronization
- Implicit barrier across all threads at return of kernel

CMU / 清华⼤大学, Summer 2017

Summary: CUDA abstractions
▪ Execution: thread hierarchy

- Bulk launch of many threads (this is imprecise... I’ll clarify later)
- Two-level hierarchy: threads are grouped into thread blocks

▪ Distributed address space
- Built-in memcpy primitives to copy between host and device address spaces
- Three different types of device address spaces
- Per thread, per block (“shared”), or per program (“global”)

▪ Barrier synchronization primitive for threads in thread block

▪ Atomic primitives for additional synchronization (shared and global variables)

CMU / 清华⼤大学, Summer 2017

CUDA semantics
#define	THREADS_PER_BLK	128	

__global__	void	convolve(int	N,	float*	input,	float*	output)	{	

			__shared__	float	support[THREADS_PER_BLK+2];		//	per-block	allocation	
			int	index	=	blockIdx.x	*	blockDim.x	+	threadIdx.x;	//	thread	local	var	

			support[threadIdx.x]	=	input[index];	
			if	(threadIdx.x	<	2)	{	
						support[THREADS_PER_BLK+threadIdx.x]	=	input[index+THREADS_PER_BLK];		
			}	

			__syncthreads();	

			float	result	=	0.0f;		//	thread-local	variable	
			for	(int	i=0;	i<3;	i++)				
					result	+=	support[threadIdx.x	+	i];	

			output[index]	=	result	/	3.f;	
}	

//	host	code	//	

int	N	=	1024	*	1024;	
cudaMalloc(&devInput,	N+2);		//	allocate	array	in	device	memory	
cudaMalloc(&devOutput,	N);			//	allocate	array	in	device	memory	

//	property	initialize	contents	of	devInput	here	...	

convolve<<<N/THREADS_PER_BLK,	THREADS_PER_BLK>>>(N,	devInput,	devOutput); launch over 1 million CUDA
threads (over 8K thread blocks)

Will running this CUDA program
create 1 million instances of
local variables/per-thread stack?

8K instances of shared
variables? (support)

Consider implementation of creating a
C++ thread: std::thread():

Allocate thread state:
- Stack space for thread
- Allocate control block so OS can

schedule thread

CMU / 清华⼤大学, Summer 2017

Assigning work

High-end GPU
(16 cores)

Mid-range GPU
(6 cores)

Desirable for CUDA program to run on both
of these GPUs without modification

Note: there is no concept of num_cores in
the CUDA programs I have shown you.
(CUDA thread launch is similar in spirit to a
forall loop in data parallel model examples)

CMU / 清华⼤大学, Summer 2017

CUDA compilation
#define	THREADS_PER_BLK	128	

__global__	void	convolve(int	N,	float*	input,	float*	output)	{	

			__shared__	float	support[THREADS_PER_BLK+2];		//	per	block	allocation	
			int	index	=	blockIdx.x	*	blockDim.x	+	threadIdx.x;	//	thread	local	var	

			support[threadIdx.x]	=	input[index];	
			if	(threadIdx.x	<	2)	{	
						support[THREADS_PER_BLK+threadIdx.x]	=	input[index+THREADS_PER_BLK];		
			}	

			__syncthreads();	

			float	result	=	0.0f;		//	thread-local	variable	
			for	(int	i=0;	i<3;	i++)				
					result	+=	support[threadIdx.x	+	i];	

			output[index]	=	result;	
}

launch 8K thread blocks

A compiled CUDA device binary includes:

Program text (instructions)
Information about required resources:
- 128 threads per block
- B bytes of local data per thread
- 130 floats (520 bytes) of shared

space per thread block

int	N	=	1024	*	1024;	
cudaMalloc(&devInput,	N+2);		//	allocate	array	in	device	memory	
cudaMalloc(&devOutput,	N);			//	allocate	array	in	device	memory	

//	property	initialize	contents	of	devInput	here	...	

convolve<<<N/THREADS_PER_BLK,	THREADS_PER_BLK>>>(N,	devInput,	devOutput);

CMU / 清华⼤大学, Summer 2017

CUDA thread-block assignment

Thread block scheduler

Shared mem Shared mem Shared mem Shared mem

Device global memory
(DRAM)

Kernel launch command from host
launch(blockDim,	convolve)

. . .
Grid of 8K convolve thread blocks (specified by kernel launch)

Block resource requirements:
(contained in compiled kernel binary)
128 threads
520 bytes of shared mem
(128 x B) bytes of local mem

Major CUDA assumption: thread block
execution can be carried out in any order
(no dependencies between blocks)

GPU implementation maps thread blocks
(“work”) to cores using a dynamic
scheduling policy that respects the
program’s resource requirements

Shared mem is fast
on-chip memory

Special HW
in GPU

CMU / 清华⼤大学, Summer 2017

Another example of our common design pattern:
a pool of worker “threads”

Problem to solve

Sub-problems
(aka “tasks”, “work”)

Worker Threads

Decomposition

Assignment

Best practice: create enough workers to “fill” parallel machine, and no more:
- One worker per parallel execution resource (e.g., CPU core, core execution context)
- May want N workers per core (where N is large enough to hide memory/IO latency)
- Pre-allocate resources for each worker
- Dynamically assign tasks to worker threads (reuse allocation for many tasks)

Other examples:
- ISPC’s implementation of launching tasks
- Creates one pthread for each hyper-thread on CPU. Threads kept alive for remainder of program

- Thread pool in a web server
- Number of threads is a function of number of cores, not number of outstanding requests
- Threads spawned at web server launch, wait for work to arrive

CMU / 清华⼤大学, Summer 2017

NVIDIA GTX 1080 (2016)

“Shared” memory storage
(96 KB)

Registers for warp execution
contexts: max 64

(256 KB)

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp
0

Warp
1

Warp
63

Warp
62… …

This is one NVIDIA Pascal GP104 streaming multi-processor (SM) unit

= SIMD functional unit,
 control shared across 32 units
 (1 MUL-ADD per clock)

= SIMD special function unit
 (sin, cos, etc.)

= load/store

SM resource limits:
- Max warp execution contexts:

64 (2,048 total CUDA threads)
- 96 KB of shared memory

L1 cache
(48 KB)

CMU / 清华⼤大学, Summer 2017

Recall, CUDA kernels execute as SPMD programs
On NVIDIA GPUs groups of 32 CUDA threads share an instruction stream. These groups called “warps”.
A convolve thread block is executed by 4 warps (4 warps x 32 threads/warp = 128 CUDA threads per block)
(Warps are an important GPU implementation detail, but not a CUDA abstraction!)

Running a single thread block on a “SM core”
#define	THREADS_PER_BLK	128	

__global__	void	convolve(int	N,	float*	input,	
																									float*	output)	
{	
			__shared__	float	support[THREADS_PER_BLK+2];	
			int	index	=	blockIdx.x	*	blockDim.x	+	
															threadIdx.x;	

			support[threadIdx.x]	=	input[index];	
			if	(threadIdx.x	<	2)	{	
						support[THREADS_PER_BLK+threadIdx.x]	
								=	input[index+THREADS_PER_BLK];		
			}	

			__syncthreads();	

			float	result	=	0.0f;		//	thread-local	
			for	(int	i=0;	i<3;	i++)				
					result	+=	support[threadIdx.x	+	i];	

			output[index]	=	result;	
}

SM core operation each clock:
- Select up to four runnable warps from 64 resident on SM core (thread-level parallelism)
- Select up to two runnable instructions per warp (instruction-level parallelism) *

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

“Shared” memory storage
(96 KB)

Warp registers: max 64 warps
(256 KB)

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp
0

Warp
1

Warp
63

Warp
62… …

This is one NVIDIA Pascal GP104 streaming multi-processor (SM) unit

= SIMD functional unit,
 control shared across 32 units
 (1 MUL-ADD per clock)

= SIMD special function unit
 (sin, cos, etc.)

= SIMD special function unit
 (sin, cos, etc.)

SM resource limits:
- Max warp execution contexts: 64

(2,048 total CUDA threads)
- 96 KB of shared memory

L1 cache
(48 KB)

support	
(520	bytes)

CMU / 清华⼤大学, Summer 2017

Review: what is a “warp”?
▪ A warp is a CUDA implementation detail on NVIDIA GPUs

▪ On modern NVIDIA hardware, groups of 32 CUDA threads in a thread block are
executed simultaneously using 32-wide SIMD execution.

Fetch/Decode

…
thread 0 ctx

thread 31 ctx

thread 32 ctx

thread 63 ctx

thread 64 ctx

…

…

thread 383 ctx

Warp 0 context

Warp 1 context

…
thread 352 ctx

Warp 11 context

In this fake NVIDIA GPU example:
The core maintains contexts for 12 warps
Selects one warp to run each clock

CMU / 清华⼤大学, Summer 2017

Review: what is a “warp”?
▪ A warp is a CUDA implementation detail on NVIDIA GPUs

▪ On modern NVIDIA hardware, groups of 32 CUDA threads in a thread block are
executed simultaneously using 32-wide SIMD execution.
- These 32 logical CUDA threads share an instruction stream and therefore

performance can suffer due to divergent execution.
- This mapping is similar to how ISPC runs program instances in a gang.

▪ The group of 32 threads sharing an instruction stream is called a warp.
- In a thread block, threads 0-31 fall into the same warp (so do threads 32-63, etc.)
- Therefore, a thread block with 256 CUDA threads is mapped to 8 warps.
- Each “SM” core in the GTX 1080 is capable of scheduling and interleaving execution

of up to 64 warps.
- So a “SM” core is capable of concurrently executing multiple CUDA thread blocks.

CMU / 清华⼤大学, Summer 2017

L2 Cache (2 MB)

GPU memory
DDR5 DRAM

320 GB/sec
(256 bit interface)

NVIDIA GTX 1080 (20 SMs)

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

 CMU 15-418/618, Spring 2017

NVIDIA GTX 1080 (2016)

. . .

96 KB shared
48 KB L1

256 KB registers

CMU / 清华⼤大学, Summer 2017

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

L2 Cache (2 MB)

GPU memory
(DDR5 DRAM)

320 GB/sec

Summary: geometry of the GTX 1080

1.6 GHz clock

20 SM cores per chip

20 x 128 = 2,560 SIMD mul-add ALUs
 = 8.1 TFLOPs

Up to 20 x 64 = 1280 interleaved warps
per chip (40,960 CUDA threads/chip)

TDP: 180 watts

CMU / 清华⼤大学, Summer 2017

Running a CUDA program on a GPU

CMU / 清华⼤大学, Summer 2017

Running the convolve kernel
convolve kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block requires 130 x sizeof(float) = 520 bytes of shared memory

Let’s assume array size N is very large, so the host kernel launch generates thousands of thread blocks.
#define	THREADS_PER_BLK	128	
convolve<<<N/THREADS_PER_BLK,	THREADS_PER_BLK>>>(N,	input_array,	output_array);

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

“Shared” memory
storage (1.5 KB)

GPU Work Scheduler

Let’s run this program on the fake two-core GPU below.
(Note: my fake cores are much “smaller” than the GTX 1080 SM cores discussed earlier in lecture: they have
fewer execution units, support for fewer active warps, less shared memory, etc.)

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

“Shared” memory
storage (1.5 KB)

Core 0 Core 1

CMU / 清华⼤大学, Summer 2017

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

“Shared” memory
storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

“Shared” memory
storage (1.5 KB)

Core 0 Core 1

EXECUTE:				convolve	
ARGS:							N,	input_array,	output_array	
NUM_BLOCKS:	1000	

Step 1: host sends CUDA device (GPU) a command (“execute this kernel”)

CMU / 清华⼤大学, Summer 2017

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE:				convolve	
ARGS:							N,	input_array,	output_array	
NUM_BLOCKS:	1000	

Step 2: scheduler maps block 0 to core 0 (reserves execution contexts for 128 threads
and 520 bytes of shared storage)

NEXT	=	1
TOTAL	=	1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 0: support	
(520 bytes)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 0 (contexts 0-127)

CMU / 清华⼤大学, Summer 2017

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE:				convolve	
ARGS:							N,	input_array,	output_array	
NUM_BLOCKS:	1000	

Step 3: scheduler continues to map blocks to available execution contexts
(interleaved mapping shown)

NEXT	=	2
TOTAL	=	1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 0: support	
(520 bytes @ 0x0)

Block 0 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 1 (contexts 0-127)

CMU / 清华⼤大学, Summer 2017

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE:				convolve	
ARGS:							N,	input_array,	output_array	
NUM_BLOCKS:	1000	

Step 3: scheduler continues to map blocks to available execution contexts
(interleaved mapping shown)

NEXT	=	3
TOTAL	=	1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 0: support	
(520 bytes @ 0x0)

Block 0 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

Block 2 (contexts 128-255)

Block 1 (contexts 0-127)

CMU / 清华⼤大学, Summer 2017

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE:				convolve	
ARGS:							N,	input_array,	output_array	
NUM_BLOCKS:	1000	

Step 3: scheduler continues to map blocks to available execution contexts (interleaved mapping shown).
Only two thread blocks fit on a core
(third block won’t fit due to insufficient shared storage 3 x 520 bytes > 1.5 KB)

NEXT	=	4
TOTAL	=	1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 0: support	
(520 bytes @ 0x0)

Block 0 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

Block 2 (contexts 128-255) Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

CMU / 清华⼤大学, Summer 2017

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE:				convolve	
ARGS:							N,	input_array,	output_array	
NUM_BLOCKS:	1000	

Step 4: thread block 0 completes on core 0

NEXT	=	4
TOTAL	=	1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support	
(520 bytes @ 0x0)

Block 2: support	
(520 bytes 0x520)

Block 2 (contexts 128-255) Block 3: support	
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

CMU / 清华⼤大学, Summer 2017

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE:				convolve	
ARGS:							N,	input_array,	output_array	
NUM_BLOCKS:	1000	

Step 5: block 4 is scheduled on core 0 (mapped to execution contexts 0-127)

NEXT	=	5
TOTAL	=	1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 4: support
(520 bytes @ 0x0)

Block 4 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support	
(520 bytes @ 0x0)

Block 2: support	
(520 bytes 0x520)

Block 2 (contexts 128-255) Block 3: support	
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

CMU / 清华⼤大学, Summer 2017

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE:				convolve	
ARGS:							N,	input_array,	output_array	
NUM_BLOCKS:	1000	

Step 6: thread block 2 completes on core 0

NEXT	=	5
TOTAL	=	1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 4: support
(520 bytes @ 0x0)

Block 4 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support	
(520 bytes @ 0x0)

Block 3: support	
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

CMU / 清华⼤大学, Summer 2017

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE:				convolve	
ARGS:							N,	input_array,	output_array	
NUM_BLOCKS:	1000	

Step 7: thread block 5 is scheduled on core 0 (mapped to execution contexts 128-255)

NEXT	=	6
TOTAL	=	1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 4: support
(520 bytes @ 0x0)

Block 4 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support	
(520 bytes @ 0x0)

Block 3: support	
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)
Block 5: support

(520 bytes 0x520)

Block 5 (contexts 128-255)

CMU / 清华⼤大学, Summer 2017

More advanced scheduling questions:
(If you understand the following examples you really understand how
CUDA programs run on a GPU, and also have a good handle on the work

scheduling issues we’ve discussed in class to this point.)

CMU / 清华⼤大学, Summer 2017

Why must CUDA allocate execution contexts for all threads in a block?
#define	THREADS_PER_BLK	256	

__global__	void	convolve(int	N,	float*	input,	
																									float*	output)	
{	
			__shared__	float	support[THREADS_PER_BLK+2];	
			int	index	=	blockIdx.x	*	blockDim.x	+	
															threadIdx.x;	

			support[threadIdx.x]	=	input[index];	
			if	(threadIdx.x	<	2)	{	
						support[THREADS_PER_BLK+threadIdx.x]	
								=	input[index+THREADS_PER_BLK];		
			}	

			__syncthreads();	

			float	result	=	0.0f;		//	thread-local	
			for	(int	i=0;	i<3;	i++)				
					result	+=	support[threadIdx.x	+	i];	

			output[index]	=	result;	
}

Imagine a thread block with 256 CUDA threads (needs 8 warps)
(see code, top-right)

Assume a fake SM core with only 4 warps of execution contexts
(illustrated above)

Why not just run four warps (threads 0-127) to completion then
run next four warps (threads 128-255) to completion in order to
execute the entire thread block?

CUDA kernels may create dependencies between
threads in a block

Simplest example is __syncthreads()

Threads in a block cannot be executed by the
system in any order when dependencies exist.

CUDA semantics: threads in a block ARE running
concurrently. If a thread in a block is runnable it
will eventually be run! (no deadlock)

CMU / 清华⼤大学, Summer 2017

Implementation of CUDA abstractions
▪ Thread blocks can be scheduled in any order by the system

- System assumes no dependencies between blocks
- Logically concurrent
- A lot like ISPC tasks, right?

▪ CUDA threads in same block DO run at the same time
- When block begins executing, all threads are running

(these semantics impose a scheduling constraint on the system)
- A CUDA thread block is itself an SPMD program
- Threads in thread-block are concurrent, cooperating “workers”

▪ CUDA implementation:
- A NVIDIA GPU warp has performance characteristics akin to an ISPC gang of instances (but unlike

an ISPC gang, the warp concept does not exist in the programming model*)
- All warps in a thread block are scheduled onto the same core, allowing for high-BW/low latency

communication through shared memory variables
- When all threads in block complete, block resources (shared memory allocations, warp execution

contexts) become available for next block

* Exceptions to this statement include intra-warp builtin operations like swizzle and vote

CMU / 清华⼤大学, Summer 2017

Consider a program that creates a histogram:
▪ This example: build a histogram of values in an array

- All CUDA threads atomically update shared variables in global memory

▪ Notice I have never claimed CUDA thread blocks were guaranteed to be independent.
I only stated CUDA reserves the right to schedule them in any order.

Global memory

int counts[10]

Thread block 0 Thread block N

. . .atomicAdd(&counts[A[i]], 1); atomicAdd(&counts[A[i]], 1);

int* A = {0, 3, 4, 1, 9 , 2, . . . , 8, 4 , 1 }; // array of integers between 0-9

▪ This is valid code! This use of atomics does not impact implementation’s ability to
schedule blocks in any order (atomics used for mutual exclusion, and nothing more)

. . .
int A[N]

CMU / 清华⼤大学, Summer 2017

. . .

But is this reasonable CUDA code?
▪ Consider implementation of on a single core GPU with resources

for one CUDA thread block per core
- What happens if the CUDA implementation runs block 0 first?

- What happens if the CUDA implementation runs block 1 first?

Global memory
int myFlag

// do stuff here

atomicAdd(&myFlag, 1);

while(atomicAdd(&myFlag, 0) == 0)
 { }

// do stuff here

(assume myFlag is initialized to 0)

Thread block 0 Thread block 1

CMU / 清华⼤大学, Summer 2017

“Persistent thread” CUDA programming style
#define	THREADS_PER_BLK	128	
#define	BLOCKS_PER_CHIP	20	*	(2048/128)	//	specific	to	GTX	1080	GPU	

__device__	int	workCounter	=	0;		//	global	mem	variable	

__global__	void	convolve(int	N,	float*	input,	float*	output)	{	
		__shared__	int	startingIndex;	
		__shared__	float	support[THREADS_PER_BLK+2];		//	shared	across	block	
		while	(1)	{	
		
					//	thread	block	grabs	next	“piece	of	work”	for	block	to	do	
					//	represented	by	‘startingIndex’	
					if	(threadIdx.x	==	0)	
								startingIndex	=	atomicInc(workCounter,	THREADS_PER_BLK);	
					__syncthreads();	

		if	(startingIndex	>=	N)	
								break;	

					int	index	=	startingIndex	+	threadIdx.x;	//	thread	local	
					support[threadIdx.x]	=	input[index];	
					if	(threadIdx.x	<	2)	
								support[THREADS_PER_BLK+threadIdx.x]	=	input[index+THREADS_PER_BLK];		

					__syncthreads();	

					float	result	=	0.0f;		//	thread-local	variable	
					for	(int	i=0;	i<3;	i++)				
							result	+=	support[threadIdx.x	+	i];	
					output[index]	=	result;	

						__syncthreads();	
			}	
}	

//	host	code	//	
int	N	=	1024	*	1024;	
cudaMalloc(&devInput,	N+2);		//	allocate	array	in	device	memory	
cudaMalloc(&devOutput,	N);			//	allocate	array	in	device	memory	
//	properly	initialize	contents	of	devInput	here	...	
convolve<<<BLOCKS_PER_CHIP,	THREADS_PER_BLK>>>(N,	devInput,	devOutput);

Idea: write CUDA code that requires
knowledge of the number of cores and
blocks per core that are supported by
underlying GPU implementation.

Programmer launches exactly as many
thread blocks as will fill the GPU

(Program makes assumptions about GPU
implementation: that GPU will in fact run
all blocks concurrently. Ugg!)

Now, work assignment to blocks is
implemented entirely by the application

(circumvents GPU’s thread block scheduler)

Now the programmer’s mental model is
that *all* CUDA threads are concurrently
running on the GPU at once.

CMU / 清华⼤大学, Summer 2017

CUDA summary
▪ Execution semantics

- Partitioning of problem into thread blocks is in the spirit of the data-parallel model
(intended to be machine independent: system schedules blocks onto any number of cores)

- Threads in a thread block actually do run concurrently (they have to, since they cooperate)
- Inside a single thread block: SPMD shared address space programming

- There are subtle, but notable differences between these models of execution. Make sure
you understand it. (And ask yourself what semantics are being used whenever you
encounter a parallel programming system)

▪ Memory semantics
- Distributed address space: host/device memories
- Thread local/block shared/global variables within device memory

- Loads/stores move data between them (so it is correct to think about local/shared/
global memory as being distinct address spaces)

▪ Key implementation details:
- Threads in a thread block are scheduled onto same GPU core to allow fast communication

through shared memory
- Threads in a thread block are are grouped into warps for SIMD execution on GPU hardware

CMU / 清华⼤大学, Summer 2017

One last point… (for those interested in gfx)
▪ In this lecture, we talked about writing CUDA programs for

the programmable cores in a GPU
- Work (described by a CUDA kernel launch) was mapped onto the cores via a

hardware work scheduler

▪ Remember, there is still the graphics pipeline interface for
driving GPU execution for real-time 3D graphics
- And much of the interesting non-programmable functionality of the GPU is

present to accelerate execution of graphics pipeline operations

- It’s more or less “turned off” when running CUDA programs

▪ How the GPU implements the graphics pipeline efficiently is
a topic for an advanced graphics class…

