
Parallel Computer Architecture and Programming
CMU / 清华⼤大学, Summer 2017

Lecture 11:

A Basic Snooping-Based
Multi-Processor Implementation

CMU / 清华⼤大学, Summer 2017

Tsinghua has its own ice cream! Wow!

CMU / 清华⼤大学, Summer 2017

Review: MSI state transition diagram

S
(Shared)

M
(Modified)

PrRd / --
PrWr / --

PrRd / BusRd

BusRd / flush

Remote processor (coherence) initiated transaction

Local processor initiated transaction

A / B: if action A is observed by cache controller, action B is taken

I
(Invalid)

PrWr / BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / flush

BusRd / --

flush = flush dirty line to memory

CMU / 清华⼤大学, Summer 2017

Review:
P0: LD X
P0: LD X

P0: ST X ← 1

P0: ST X ← 2

P1: ST X ← 3
P1: LD X
P0: LD X

P0: ST X ← 4
P1: LD X
P0: LD Y

P0: ST Y ← 1

P1: ST Y ← 2

Consider this sequence of loads and stores
to addresses X and Y by processors P0 and P1

Assume that X and Y contain value 0 at start
of execution.

CMU / 清华⼤大学, Summer 2017

Today: implementing cache coherence
▪ Wait... wasn’t this the topic of last class?

▪ In the previous lectures we talked about cache coherence protocols
- But our discussion was very abstract
- We described what messages/transactions needed to be sent
- We assumed messages/transactions were atomic

Today we will talk about implementing
an invalidation-based protocol

Today’s point: in a real machine...
efficiently ensuring coherence is
complex

CMU / 清华⼤大学, Summer 2017

E
(Exclusive)

M
(Modified)

PrRd / --
PrWr / --

PrWr / BusUgr BusRd / flush

I
(Invalid)

PrWr / BusRdX

PrWr / --

PrRd / --
BusRdX / --

BusRdX / flush

BusRd / --

S
(Shared)

PrRd / --

PrRd / BusRd
(no other cache
asserts shared)

PrRd / BusRd

BusRd / --

BusRdX / --
(another cache
asserts shared)

Review: MESI state transition diagram

CMU / 清华⼤大学, Summer 2017

Part 1:
A basic implementation of snooping

(assuming an “atomic” bus)

CMU / 清华⼤大学, Summer 2017

Consider a basic system design
- One outstanding memory request per processor
- Single level, write-back cache per processor
- Cache can stall processor as it is carrying out coherence operations
- System interconnect is an atomic shared bus (one cache can send data over bus at a time)

Cache

Processor

Interconnect (shared bus)

Data

Cache

Processor

Tags Data

Memory

State Tags State

CMU / 清华⼤大学, Summer 2017

Transaction on an atomic bus
1. Client is granted bus access (result of arbitration)
2. Client places command on bus (may also place data on bus)

3. Response to command by another bus client placed on bus
4. Next client obtains bus access (arbitration)

CMU / 清华⼤大学, Summer 2017

Cache miss logic on a single core processor
1. Determine location in cache (using appropriate bits of address)
2. Check cache tags (to determine if line is in cache)

3. Request access to bus
4. Wait for bus grant (bus “arbitrator” manages access to bus)
5. Send address + command on bus
6. Wait for command to be accepted
7. Receive data on bus

[Let’s assume no matching tags, so must read data from memory]

Address

Data

In a multi-core processor:

For BusRd, BusRdX: no other bus
transactions allowed between issuing
address and receiving data

Flush: address and data sent
simultaneously, received by memory before
any other transaction allowed on bus

CMU / 清华⼤大学, Summer 2017

Reporting snoop results

▪ Let’s assume a cache read miss (BusRd command on bus)

▪ Response of all caches must appear on bus
- Is line dirty in some cache? If so, memory should not respond

- Is line shared? If so, cache should load into S state, not E

Memory needs to
know what to do

Loading cache needs
to know what to do

How are snoop results communicated?

CMU / 清华⼤大学, Summer 2017

How to report snoop results

Address
Data

Shared
Dirty
Snoop not done

‘OR’ of result from all processors
‘OR’ of result from all processors

Bus

‘OR’ of result from all processors
(0 value indicates all processors have responded)

These three lines are additional
bus interconnect hardware!

CMU / 清华⼤大学, Summer 2017

Handling write back of dirty cache lines
▪ Replacing a dirty cache line involves two bus transactions

1. Read incoming line (line requested by processor)
2. Write outgoing line (evicted dirty line in cache that must be flushed)

▪ Ideally would like the processor to continue as soon as
possible (it should not have to wait for the flush of the dirty
line to complete)

▪ Solution in modern processors: write-back buffer
- Stick line to be evicted (flushed) in a “write-back buffer”
- Immediately load requested line (allows processor to continue)
- Flush contents of write-back buffer at a later time

CMU / 清华⼤大学, Summer 2017

Cache with write-back buffer

What if a request for the address of
the data in the write-back buffer
appears on the bus?

Snoop controller must check the
write-back buffer addresses in
addition to cache tags.

If there is a write-back buffer match:

1. Respond with data from write-
back buffer rather than cache

2. Cancel outstanding bus access
request (for the write back)

these hardware components handle
processor-related requests

these hardware components handle
snooping related tasks

Figure credit: Culler, Singh, and Gupta

CMU / 清华⼤大学, Summer 2017

Main point: in practice, state transitions are not atomic
(they involve many operations in a modern computer)
▪ Coherence protocol state transition diagrams (like the one below) assumed that

transitions between states were atomic

▪ But in reality there is a sequence of operations the system performs as a result of a
memory operation (look up cache tags, arbitrate for bus, wait for actions by other
controllers, …)

CMU / 清华⼤大学, Summer 2017

So when is a write “done”?

▪ Remember, memory coherence says there must be
some serial order (a timeline) of all read and write
operations to the same address that is consistent
with the results observed by all processors during
program execution

▪ So given what we know about how coherence is
implemented, at what point is the write
“committed” to the timeline? (when do all
processors agree that it has occurred?)

Chronology of
operations on

address X

P0 write: 5

P1 read (5)

P2 read (5)

P0 read (5)

P1 write: 25

P0 read (25)

CMU / 清华⼤大学, Summer 2017

Self check: when does a write “commit?”
▪ Consider a sequence of operations a machine performs when

carrying out a write (consider write miss scenario)

1. Core issues STORE X ←R0 instruction
2. Look up line in cache (assume line not in cache or not in M state)
3. Arbitrate for bus
4. Place BusRdX on bus / other processors snoop request
5. Memory responds with data for cache line containing X
6. Contents of R0 written to appropriate bytes of cache line

▪ When does the write “commit”?
- In other words, at what point are we guaranteed that the write

will be “visible” to other processors?

CMU / 清华⼤大学, Summer 2017

Self check: when does a write “commit?”
▪ A write commits when a read-exclusive transaction appears on bus

and is acknowledged by all other caches
- At this point, the write is “committed”
- All future reads will reflect the value of this write (even if data from P has not yet been

written to P’s dirty cache line, or to memory)
- Why is this?

- Key idea: order of transactions on the bus defines the global order of writes in the
parallel program (write serialization requirement of coherence)

▪ Commit != complete: a write completes when the store instruction
is done (updated value has been put in the cache line)

▪ Why does a write-back buffer not affect when a write commits?

CMU / 清华⼤大学, Summer 2017

First-half summary: parallelism and concurrency
in real hardware implementation of coherence
▪ Processor, cache, and bus all are hardware resources operating in parallel!

- Often contending for shared resources:
- Processor and bus contend for cache
- Difference caches contend for bus access

▪ “Memory operations” are abstracted by the architecture as atomic (e.g.,
loads, stores) are implemented via multiple operations involving all of these
hardware components

CMU / 清华⼤大学, Summer 2017

Part 2:
Building the system around non-atomic

bus transactions

CMU / 清华⼤大学, Summer 2017

Review: transaction on an atomic bus
1. Client is granted bus access (result of arbitration)
2. Client places command on bus (may also place data on bus)

3. Response to command by another bus client placed on bus
4. Next client obtains bus access (arbitration)

Problem: bus is idle while response is pending
(this decreases effective bus bandwidth)

This is bad, because the interconnect is a limited,
shared resource in a multi-processor system.
(So it is important to use it as efficiently as possible)

CMU / 清华⼤大学, Summer 2017

Split-transaction bus
Bus transactions are split into two transactions:

1. The request
2. The response

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

Consider this scenario:

Read miss to A by P1

Bus upgrade of B by P2

Possible timeline of events on a
split-transaction bus:

P1 gains access to bus

P1 sends BusRd A command
[memory starts fetching data now…]

P2 gains access to bus

P2 sends BusUpg command

Memory gains access to bus

Memory places A on bus
(response)

Other transactions can use the bus in between
a transaction’s request and response.

CMU / 清华⼤大学, Summer 2017

A basic design

▪ Up to eight outstanding requests at a time (system wide)

▪ Responses need not occur in the same order as requests
- But request order establishes the total order for the system

▪ Flow control via negative acknowledgements (NACKs)
- Operations can be aborted, forcing a retry

CMU / 清华⼤大学, Summer 2017

Initiating a request
Can think of a split-transaction bus as two separate buses:
a request bus and a response bus.

Request bus:
cmd + address

Response bus:
data

Step 1: Requestor asks for request bus access

Step 2: Bus arbiter grants access, assigns transaction an id

Step 3: Requestor places command + address on the request bus

128 bits

3 bits
Response id

CMU / 清华⼤大学, Summer 2017

Read miss: cycle-by-cycle bus behavior (phase 1)

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant

Request arbitration: cache controllers present request for address bus
(many caches may be doing so in the same cycle)

Request resolution: address bus arbiter grants access to one of the requestors
Special arbitration lines indicate what id is assigned to request

Addr

Bus “winner” places command/address on the bus

Caches perform snoop: look up tags, update cache state, etc.
Memory operation commits here!
(NO BUS TRAFFIC)

Addr
Ack

Caches acknowledge this snoop result is ready
(or signal they could not complete snoop in time here (e.g., NACK transaction)

CMU / 清华⼤大学, Summer 2017

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req

Grant
ID

Addr Addr
Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus
(Data Arbitration)

(Data)

ID
check

Data response arbitration: responder presents intent to respond
to request with specific ID
(many caches --or memory-- may be doing so in the same cycle)

Original requestor signals readiness to receive response
(or lack thereof: requestor may be busy at this time)

Grant

Data bus arbiter grants one responder bus access

Read miss: cycle-by-cycle bus behavior (phase 2)

CMU / 清华⼤大学, Summer 2017

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req

Grant
ID

Addr Addr
Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus
(Data Arbitration)

(Data)

ID
check

Grant

Read miss: cycle-by-cycle bus behavior (phase 3)

Data DataData Data

Responder places response data on data bus
Caches present snoop result for request with the data
Request table entry is freed
Here: assume 64 byte cache lines → 4 cycles on 128 bit bus

CMU / 清华⼤大学, Summer 2017

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req

Grant
ID

Addr Addr
Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus
(Data Arbitration)

(Data)

ID
check

Grant

Pipelined transactions on bus

Data DataData Data

Addr
req

Grant
ID

Addr Addr
Ack

Data
req

ID
check

Grant

Data Data ...

Note: write backs and BusUpg transactions do not have a response component
(write backs acquire access to both request address bus and data bus as part of “request” phase)

= memory transaction 1

= memory transaction 2

CMU / 清华⼤大学, Summer 2017

Request Bus
(Addr/cmd)

Response Bus
(Data Arbitration)

(Data)

Pipelined transactions
Clocks

= memory transaction 1

= memory transaction 2

...

= memory transaction 3

= memory transaction 4

Note out-of-order completion of bus
transactions
(in this figure, transaction 2 completes before 1)

CMU / 清华⼤大学, Summer 2017

Why do we have queues in a parallel system?

A B

Answer: to accommodate variable (unpredictable) rates of production and consumption.
As long as A and B produce and consume data at the same rate on average, both workers
can run all the time!

With queue of
size 2: A and B
never stall

A

B

1 2 3 4

1

1

2

2 1

3

1

4

5

1

6

5 6

2 10 0 0 Size of queue
when A completes
a piece of work (or
B begins work)

0

A

B

1 2 3 4

1 2 3 4

5 6

5 6

No queue: notice A stalls waiting for B to accept new input (and B sometimes stalls waiting for A to produce new input).

time

CMU / 清华⼤大学, Summer 2017

Multi-level cache hierarchies

Figure credit: Culler, Singh, and Gupta

Numbers indicate steps in a cache miss from processor on left. Serviced by cache on right.

CMU / 清华⼤大学, Summer 2017

Deadlock / Livelock

CMU / 清华⼤大学, Summer 2017

Deadlock
Deadlock is a state where a system has
outstanding operations to complete, but
no operation can make progress.

Can arise when each operation has
acquired a shared resource that another
operation needs.

In a deadlock situations, there is no way
for any thread (or, in this illustration, a
car) to make progress unless some thread
relinquishes a resource (“backs up”)

CMU / 清华⼤大学, Summer 2017

Deadlock in
Pittsburgh
:-(

CMU / 清华⼤大学, Summer 2017

Deadlock in Beijing

http://www.chicagonow.com/cheaper-than-therapy/2010/08/worlds-worst-traffic-jam-and-you-thought-chicago-traffic-was-bad

CMU / 清华⼤大学, Summer 2017

More deadlock

Credit: David Maitland, National Geographic

Why are these examples of deadlock?

CMU / 清华⼤大学, Summer 2017

Deadlock in computer systems

B

A

A produces work for B’s work queue

B produces work for A’s work queue

Queues are finite and workers wait if
no output space is available

float	msgBuf1[1024];	
float	msgBuf2[1024];	

int	threadId	=	getThreadId();	

//	send	data	to	“neighbor”	threads	
MsgSend(msgBuf1,	threadId+1,	...	
MsgSend(msgBuf1,	threadId-1,	…	

//	receive	data	from	“neighbor”	threads	
MsgRecv(msgBuf2,	threadId+1,	...	
MsgRecv(msgBuf2,	threadId-1,	...

Recall our message passing example:
Every thread sends a message (using blocking
send) to the processor with the next higher id

Then receives message from processor with next
lower id.

Example 1: Example 2:

Work queue (full)

Work queue (full)

CMU / 清华⼤大学, Summer 2017

Required conditions for deadlock
1. Mutual exclusion: only one processor can hold a resource at once

2. Hold and wait: processor must hold the resource while waiting for other
resources it needs to complete an operation

3. No preemption: processors do not give up resources until operation they
wish to perform is complete

4. Circular wait: waiting processors have mutual dependencies (a cycle exists
in the resource dependency graph)

B

A

Work queue (full)

Work queue (full)

CMU / 清华⼤大学, Summer 2017

Livelock

CMU / 清华⼤大学, Summer 2017

Livelock

CMU / 清华⼤大学, Summer 2017

Livelock

CMU / 清华⼤大学, Summer 2017

Livelock
Livelock is a state where a system is
executing many operations, but no
thread is making meaningful progress.

Can you think of a good daily life
example of livelock?

Computer system examples:

Operations continually abort and retry

CMU / 清华⼤大学, Summer 2017

Deadlock due to full queues

L1 Cache

L2 Cache

to processor

to bus

L1→L2 queue L2→L1 queue

Incoming read request (due to another cache) **

Outgoing read request (initiated by processor)

Both requests generate responses that require
space in the other queue (circular dependency)

** will only occur if L1 is write back

Assume buffers are sized so that the maximum
queue size is one message. (buffer size = 1)

CMU / 清华⼤大学, Summer 2017

Avoiding deadlock by ensuring queues never fill

Assume one outstanding memory request per processor (2 cores x 8 requests per core = 16)

Sizing all buffers to accommodate the maximum number of outstanding requests on bus is
one solution to avoiding deadlock. But a costly one!

Figure credit: Culler, Singh, and Gupta

CMU / 清华⼤大学, Summer 2017

Avoiding buffer deadlock with separate
request/response queues (prevent circular wait)

L1 Cache

L2 Cache

to processor

to bus

L1→L2
request queue

L2→L1
request queue

System classifies all transactions as requests or
responses

Key insight: responses can be completed without
generating further transactions!

Requests INCREASE queue length
But responses REDUCE queue length

While stalled attempting to send a request, cache
must be able to service responses.

Responses will make progress (they generate no
new work so there’s no circular dependence),
eventually freeing up resources for requests

L1→L2
response queue

L2→L1
response queue

CMU / 清华⼤大学, Summer 2017

int	x	=	10;						//	assume	this	is	a	write	to	memory	(the	value		
																									//	is	not	stored	in	register)

Putting it all together

Challenge exercise: describe everything that might occur during
the execution of this line of code

CMU / 清华⼤大学, Summer 2017

int	x	=	10;
1. Virtual address to physical address conversion (TLB lookup)
2. TLB miss
3. TLB update (might involve OS)
4. OS may need to swap in page to get the appropriate page table (load from disk to physical address)
5. Cache lookup (tag check)
6. Determine line not in cache (need to generate BusRdX)
7. Arbitrate for bus
8. Win bus, place address, command on bus
9. All caches perform snoop (e.g., invalidate their local copies of the relevant line)
10. Another cache or memory decides it must respond (let’s assume it’s memory)
11. Memory request sent to memory controller
12. Memory controller is itself a scheduler
13. Memory controller checks active row in DRAM row buffer. (May need to activate new DRAM row. Let’s assume it does.)
14. DRAM reads values into row buffer
15. Memory arbitrates for data bus
16. Memory wins bus
17. Memory puts data on bus
18. Requesting cache grabs data, updates cache line and tags, moves line into exclusive state
19. Processor is notified data exists
20. Instruction proceeds

Class exercise: describe everything that might
occur during the execution of this statement *

* This list is certainly not complete, it’s just what I
came up with off the top of my head. (I think this
would be a great job interview question!)

