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Tsinghua has its own ice cream! Wow!
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Review: MSI state transition diagram

S 
(Shared)

M 
(Modified)

PrRd / -- 
PrWr / --

PrRd / BusRd

BusRd / flush

Remote processor (coherence) initiated transaction

Local processor initiated transaction

A / B: if action A is observed by cache controller,  action B is taken

I 
(Invalid)

PrWr / BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / flush

BusRd / --

flush = flush dirty line to memory
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Review:
P0:  LD X 
P0:  LD X 

P0:  ST X ← 1 

P0:  ST X ← 2 

P1:  ST X ← 3 
P1:  LD X 
P0:  LD X 

P0:  ST X ← 4 
P1:  LD X  
P0:  LD Y 

P0:  ST Y ← 1 

P1:  ST Y ← 2

Consider this sequence of loads and stores 
to addresses X and Y by processors P0 and P1

Assume that X and Y contain value 0 at start 
of execution.
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Today: implementing cache coherence 
▪ Wait... wasn’t this the topic of last class?

▪ In the previous lectures we talked about cache coherence protocols 
- But our discussion was very abstract 
- We described what messages/transactions needed to be sent 
- We assumed messages/transactions were atomic

Today we will talk about implementing 
an invalidation-based protocol 

Today’s point: in a real machine... 
efficiently ensuring coherence is 
complex
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E 
(Exclusive)

M 
(Modified)

PrRd / -- 
PrWr / --

PrWr / BusUgr BusRd / flush

I 
(Invalid)

PrWr / BusRdX

PrWr / --

PrRd / --
BusRdX / --

BusRdX / flush

BusRd / --

S 
(Shared)

PrRd / --

PrRd / BusRd 
(no other cache 
asserts shared)

PrRd / BusRd

BusRd / --

BusRdX / --
(another cache 
asserts shared)

Review: MESI state transition diagram
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Part 1: 
A basic implementation of snooping 

(assuming an “atomic” bus)
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Consider a basic system design
- One outstanding memory request per processor 
- Single level, write-back cache per processor 
- Cache can stall processor as it is carrying out coherence operations 
- System interconnect is an atomic shared bus (one cache can send data over bus at a time)

Cache

Processor

Interconnect (shared bus)

Data

Cache

Processor

Tags Data

Memory

State Tags State



CMU / 清华⼤大学, Summer 2017

Transaction on an atomic bus
1. Client is granted bus access (result of arbitration) 
2. Client places command on bus (may also place data on bus) 

3. Response to command by another bus client placed on bus  
4. Next client obtains bus access (arbitration)
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Cache miss logic on a single core processor
1. Determine location in cache (using appropriate bits of address) 
2. Check cache tags (to determine if line is in cache) 

3. Request access to bus 
4. Wait for bus grant (bus “arbitrator” manages access to bus) 
5. Send address + command on bus 
6. Wait for command to be accepted 
7. Receive data on bus

[Let’s assume no matching tags, so must read data from memory]

Address

Data

In a multi-core processor: 

For BusRd, BusRdX: no other bus 
transactions allowed between issuing 
address and receiving data 

Flush: address and data sent 
simultaneously, received by memory before 
any other transaction allowed on bus
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Reporting snoop results

▪ Let’s assume a cache read miss (BusRd command on bus) 

▪ Response of all caches must appear on bus 
- Is line dirty in some cache? If so, memory should not respond 

- Is line shared? If so, cache should load into S state, not E

Memory needs to 
know what to do

Loading cache needs 
to know what to do

How are snoop results communicated?
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How to report snoop results

Address
Data

Shared
Dirty
Snoop not done

‘OR’ of result from all processors
‘OR’ of result from all processors

Bus

‘OR’ of result from all processors 
(0 value indicates all processors have responded)

These three lines are additional 
bus interconnect hardware!
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Handling write back of dirty cache lines
▪ Replacing a dirty cache line involves two bus transactions 

1. Read incoming line (line requested by processor) 
2. Write outgoing line (evicted dirty line in cache that must be flushed) 

▪ Ideally would like the processor to continue as soon as 
possible (it should not have to wait for the flush of the dirty 
line to complete) 

▪ Solution in modern processors: write-back buffer 
- Stick line to be evicted (flushed) in a “write-back buffer” 
- Immediately load requested line (allows processor to continue) 
- Flush contents of write-back buffer at a later time
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Cache with write-back buffer

What if a request for the address of 
the data in the write-back buffer 
appears on the bus? 

Snoop controller must check the 
write-back buffer addresses in 
addition to cache tags. 

If there is a write-back buffer match: 

1. Respond with data from write-
back buffer rather than cache 

2. Cancel outstanding bus access 
request (for the write back)

these hardware components handle 
processor-related requests

these hardware components handle 
snooping related tasks

Figure credit: Culler, Singh, and Gupta
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Main point: in practice, state transitions are not atomic 
(they involve many operations in a modern computer)
▪ Coherence protocol state transition diagrams (like the one below) assumed that 

transitions between states were atomic  

▪ But in reality there is a sequence of operations the system performs as a result of a 
memory operation (look up cache tags, arbitrate for bus, wait for actions by other 
controllers, …)
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So when is a write “done”?

▪ Remember, memory coherence says there must be 
some serial order (a timeline) of all read and write 
operations to the same address that is consistent 
with the results observed by all processors during 
program execution 

▪ So given what we know about how coherence is 
implemented, at what point is the write 
“committed” to the timeline? (when do all 
processors agree that it has occurred?)

Chronology of 
operations on 

address X

P0 write: 5

P1 read (5)

P2 read (5)

P0 read (5)

P1 write: 25

P0 read (25)
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Self check: when does a write “commit?”
▪ Consider a sequence of operations a machine performs when 

carrying out a write  (consider write miss scenario) 

1. Core issues STORE  X ←R0 instruction 
2. Look up line in cache  (assume line not in cache or not in M state) 
3. Arbitrate for bus 
4. Place BusRdX on bus / other processors snoop request 
5. Memory responds with data for cache line containing X 
6. Contents of R0 written to appropriate bytes of cache line 

▪ When does the write “commit”? 
- In other words, at what point are we guaranteed that the write 

will be “visible” to other processors?
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Self check: when does a write “commit?”
▪ A write commits when a read-exclusive transaction appears on bus 

and is acknowledged by all other caches 
- At this point, the write is “committed” 
- All future reads will reflect the value of this write (even if data from P has not yet been 

written to P’s dirty cache line, or to memory) 
- Why is this? 

- Key idea: order of transactions on the bus defines the global order of writes in the 
parallel program (write serialization requirement of coherence) 

▪ Commit != complete: a write completes when the store instruction 
is done (updated value has been put in the cache line) 

▪ Why does a write-back buffer not affect when a write commits?
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First-half summary: parallelism and concurrency 
in real hardware implementation of coherence
▪ Processor, cache, and bus all are hardware resources operating in parallel! 

- Often contending for shared resources: 
- Processor and bus contend for cache 
- Difference caches contend for bus access 

▪ “Memory operations” are abstracted by the architecture as atomic (e.g., 
loads, stores) are implemented via multiple operations involving all of these 
hardware components
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Part 2:
Building the system around non-atomic 

bus transactions
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Review: transaction on an atomic bus
1. Client is granted bus access (result of arbitration) 
2. Client places command on bus (may also place data on bus) 

3. Response to command by another bus client placed on bus  
4. Next client obtains bus access (arbitration)

Problem: bus is idle while response is pending 
(this decreases effective bus bandwidth) 

This is bad, because the interconnect is a limited, 
shared resource in a multi-processor system. 
(So it is important to use it as efficiently as possible)
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Split-transaction bus
Bus transactions are split into two transactions: 

1. The request 
2. The response

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

Consider this scenario: 

Read miss to A by P1 

Bus upgrade of B by P2  

Possible timeline of events on a 
split-transaction bus: 

P1 gains access to bus 

P1 sends BusRd A command  
[memory starts fetching data now…] 

P2 gains access to bus 

P2 sends BusUpg command 

Memory gains access to bus 

Memory places A on bus 
(response)

Other transactions can use the bus in between 
a transaction’s request and response.
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A basic design

▪ Up to eight outstanding requests at a time (system wide) 

▪ Responses need not occur in the same order as requests 
- But request order establishes the total order for the system 

▪ Flow control via negative acknowledgements (NACKs) 
- Operations can be aborted, forcing a retry
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Initiating a request
Can think of a split-transaction bus as two separate buses: 
a request bus and a response bus.

Request bus: 
cmd + address

Response bus: 
data

Step 1: Requestor asks for request bus access 

Step 2: Bus arbiter grants access, assigns transaction an id 

Step 3: Requestor places command + address on the request bus

128 bits

3 bits
Response id



CMU / 清华⼤大学, Summer 2017

Read miss: cycle-by-cycle bus behavior (phase 1)

ClocksARB RSLV ADDR DCD ACK

Request Bus 
(Addr/cmd)

Addr 
req Grant

Request arbitration: cache controllers present request for address bus 
(many caches may be doing so in the same cycle)

Request resolution: address bus arbiter grants access to one of the requestors 
Special arbitration lines indicate what id is assigned to request

Addr

Bus “winner” places command/address on the bus

Caches perform snoop: look up tags, update cache state, etc. 
Memory operation commits here! 
(NO BUS TRAFFIC)

Addr 
Ack

Caches acknowledge this snoop result is ready 
(or signal they could not complete snoop in time here (e.g., NACK transaction)
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ClocksARB RSLV ADDR DCD ACK

Request Bus 
(Addr/cmd)

Addr 
req

Grant 
ID

Addr Addr 
Ack

Data 
req

ARB RSLV ADDR DCD ACK

Response Bus 
(Data Arbitration)

(Data)

ID 
check

Data response arbitration: responder presents intent to respond 
to request with specific ID 
(many caches --or memory-- may be doing so in the same cycle)

Original requestor signals readiness to receive response  
(or lack thereof: requestor may be busy at this time)

Grant

Data bus arbiter grants one responder bus access 

Read miss: cycle-by-cycle bus behavior (phase 2)
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ClocksARB RSLV ADDR DCD ACK

Request Bus 
(Addr/cmd)

Addr 
req

Grant 
ID

Addr Addr 
Ack

Data 
req

ARB RSLV ADDR DCD ACK

Response Bus 
(Data Arbitration)

(Data)

ID 
check

Grant

Read miss: cycle-by-cycle bus behavior (phase 3)

Data DataData Data

Responder places response data on data bus 
Caches present snoop result for request with the data 
Request table entry is freed 
Here: assume 64 byte cache lines → 4 cycles on 128 bit bus 
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ClocksARB RSLV ADDR DCD ACK

Request Bus 
(Addr/cmd)

Addr 
req

Grant 
ID

Addr Addr 
Ack

Data 
req

ARB RSLV ADDR DCD ACK

Response Bus 
(Data Arbitration)

(Data)

ID 
check

Grant

Pipelined transactions on bus

Data DataData Data

Addr 
req

Grant 
ID

Addr Addr 
Ack

Data 
req

ID 
check

Grant

Data Data ...

Note: write backs and BusUpg transactions do not have a response component 
(write backs acquire access to both request address bus and data bus as part of “request” phase)

= memory transaction 1

= memory transaction 2
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Request Bus 
(Addr/cmd)

Response Bus 
(Data Arbitration)

(Data)

Pipelined transactions
Clocks

= memory transaction 1

= memory transaction 2

...

= memory transaction 3

= memory transaction 4

Note out-of-order completion of bus 
transactions 
(in this figure, transaction 2 completes before 1)
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Why do we have queues in a parallel system?

A B

Answer: to accommodate variable (unpredictable) rates of production and consumption. 
As long as A and B produce and consume data at the same rate on average, both workers 
can run all the time!

With queue of 
size 2: A and B 
never stall 

A

B

1 2 3 4

1

1

2

2 1

3

1

4

5

1

6

5 6

2 10 0 0 Size of queue 
when A completes 
a piece of work (or 
B begins work) 

0

A

B

1 2 3 4

1 2 3 4

5 6

5 6

No queue: notice A stalls waiting for B to accept new input (and B sometimes stalls waiting for A to produce new input). 

time
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Multi-level cache hierarchies

Figure credit: Culler, Singh, and Gupta

Numbers indicate steps in a cache miss from processor on left. Serviced by cache on right.
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Deadlock / Livelock
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Deadlock
Deadlock is a state where a system has 
outstanding operations to complete, but 
no operation can make progress.  

Can arise when each operation has 
acquired a shared resource that another 
operation needs. 

In a deadlock situations, there is no way 
for any thread (or, in this illustration, a 
car) to make progress unless some thread 
relinquishes a resource (“backs up”)
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Deadlock in 
Pittsburgh 
:-(
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Deadlock in Beijing

http://www.chicagonow.com/cheaper-than-therapy/2010/08/worlds-worst-traffic-jam-and-you-thought-chicago-traffic-was-bad
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More deadlock

Credit: David Maitland, National Geographic 

Why are these examples of deadlock?
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Deadlock in computer systems

B

A

A produces work for B’s work queue

B produces work for A’s work queue

Queues are finite and workers wait if 
no output space is available

float	msgBuf1[1024];	
float	msgBuf2[1024];	

int	threadId	=	getThreadId();	

//	send	data	to	“neighbor”	threads	
MsgSend(msgBuf1,	threadId+1,	...	
MsgSend(msgBuf1,	threadId-1,	…	

//	receive	data	from	“neighbor”	threads	
MsgRecv(msgBuf2,	threadId+1,	...	
MsgRecv(msgBuf2,	threadId-1,	...

Recall our message passing example: 
Every thread sends a message (using blocking 
send) to the processor with the next higher id 

Then receives message from processor with next 
lower id.

Example 1: Example 2:

Work queue (full)

Work queue (full)
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Required conditions for deadlock
1. Mutual exclusion: only one processor can hold a resource at once 

2. Hold and wait: processor must hold the resource while waiting for other 
resources it needs to complete an operation 

3. No preemption: processors do not give up resources until operation they 
wish to perform is complete 

4. Circular wait:  waiting processors have mutual dependencies (a cycle exists 
in the resource dependency graph)

B

A

Work queue (full)

Work queue (full)
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Livelock
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Livelock
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Livelock
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Livelock
Livelock is a state where a system is 
executing many operations, but no 
thread is making meaningful progress. 

Can you think of a good daily life 
example of livelock? 

Computer system examples: 

Operations continually abort and retry 
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Deadlock due to full queues

L1 Cache

L2 Cache

to processor

to bus

L1→L2 queue L2→L1 queue

Incoming read request (due to another cache) **

Outgoing read request (initiated by processor)

Both requests generate responses that require 
space in the other queue (circular dependency)

** will only occur if L1 is write back

Assume buffers are sized so that the maximum 
queue size is one message.  (buffer size = 1)
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Avoiding deadlock by ensuring queues never fill

Assume one outstanding memory request per processor (2 cores x 8 requests per core = 16) 

Sizing all buffers to accommodate the maximum number of outstanding requests on bus is 
one solution to avoiding deadlock. But a costly one!

Figure credit: Culler, Singh, and Gupta
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Avoiding buffer deadlock with separate 
request/response queues (prevent circular wait)

L1 Cache

L2 Cache

to processor

to bus

L1→L2 
request queue

L2→L1 
request queue

System classifies all transactions as requests or 
responses 

Key insight: responses can be completed without 
generating further transactions! 

Requests INCREASE queue length 
But responses REDUCE queue length 

While stalled attempting to send a request, cache 
must be able to service responses. 

Responses will make progress (they generate no 
new work so there’s no circular dependence), 
eventually freeing up resources for requests

L1→L2 
response queue

L2→L1 
response queue
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int	x	=	10;						//	assume	this	is	a	write	to	memory	(the	value		
																									//	is	not	stored	in	register)

Putting it all together 

Challenge exercise: describe everything that might occur during 
the execution of this line of code
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int	x	=	10;
1. Virtual address to physical address conversion (TLB lookup) 
2. TLB miss 
3. TLB update (might involve OS) 
4. OS may need to swap in page to get the appropriate page table (load from disk to physical address) 
5. Cache lookup (tag check) 
6. Determine line not in cache (need to generate BusRdX) 
7. Arbitrate for bus 
8. Win bus, place address, command on bus 
9. All caches perform snoop (e.g., invalidate their local copies of the relevant line) 
10. Another cache or memory decides it must respond (let’s assume it’s memory) 
11. Memory request sent to memory controller 
12. Memory controller is itself a scheduler 
13. Memory controller checks active row in DRAM row buffer.  (May need to activate new DRAM row. Let’s assume it does.) 
14. DRAM reads values into row buffer 
15. Memory arbitrates for data bus 
16. Memory wins bus 
17. Memory puts data on bus 
18. Requesting cache grabs data, updates cache line and tags, moves line into exclusive state 
19. Processor is notified data exists 
20. Instruction proceeds

Class exercise: describe everything that might 
occur during the execution of this statement *

* This list is certainly not complete, it’s just what I 
came up with off the top of my head. (I think this 
would be a great job interview question!)


