
Parallel Computer Architecture and Programming
CMU / 清华⼤大学, Summer 2017

Lecture 17:

Spark
(leveraging bulk-granularity program structure)

CMU / 清华⼤大学, Summer 2017

Review: which program performs better?
void	add(int	n,	float*	A,	float*	B,	float*	C)	{	
				for	(int	i=0;	i<n;	i++)	
							C[i]	=	A[i]	+	B[i];					
}	

void	mul(int	n,	float*	A,	float*	B,	float*	C)	{	
				for	(int	i=0;	i<n;	i++)	
							C[i]	=	A[i]	*	B[i];					
}	

float*	A,	*B,	*C,	*D,	*E,	*tmp1,	*tmp2;	

//	assume	arrays	are	allocated	here	

//	compute	E	=	D	+	((A	+	B)	*	C)	
add(n,	A,	B,	tmp1);	
mul(n,	tmp1,	C,	tmp2);	
add(n,	tmp2,	D,	E);

void	fused(int	n,	float*	A,	float*	B,	float*	C,	float*	D,	float*	E)	{	
				for	(int	i=0;	i<n;	i++)	
							E[i]	=	D[i]	+	(A[i]	+	B[i])	*	C[i];					
}	

//	compute	E	=	D	+	(A	+	B)	*	C	
fused(n,	A,	B,	C,	D,	E);

Two loads, one store per math op
(arithmetic intensity = 1/3)

Two loads, one store per math op
(arithmetic intensity = 1/3)

Four loads, one store per 3 math ops
(arithmetic intensity = 3/5)

Overall arithmetic intensity = 1/3

Program 1

Program 2

The transformation of the code in program 1 to the code in program 2 is called “loop fusion”

CMU / 清华⼤大学, Summer 2017

Review: why did we perform this transform?

int	WIDTH	=	1024;	
int	HEIGHT	=	1024;	
float	input[(WIDTH+2)	*	(HEIGHT+2)];	
float	tmp_buf[WIDTH	*	(CHUNK_SIZE+2)];	
float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1.0/3,	1.0/3,	1.0/3};	

for	(int	j=0;	j<HEIGHT;	j+CHUNK_SIZE)	{	

		//	blur	region	of	image	horizontally	
		for	(int	j2=0;	j2<CHUNK_SIZE+2;	j2++)	
				for	(int	i=0;	i<WIDTH;	i++)	{	
						float	tmp	=	0.f;	
						for	(int	ii=0;	ii<3;	ii++)	
								tmp	+=	input[(j+j2)*(WIDTH+2)	+	i+ii]	*	weights[ii];	
						tmp_buf[j2*WIDTH	+	i]	=	tmp;	
			
		//	blur	tmp_buf	vertically	
		for	(int	j2=0;	j2<CHUNK_SIZE;	j2++)	
				for	(int	i=0;	i<WIDTH;	i++)	{	
						float	tmp	=	0.f;	
						for	(int	jj=0;	jj<3;	jj++)	
								tmp	+=	tmp_buf[(j2+jj)*WIDTH	+	i]	*	weights[jj];	
						output[(j+j2)*WIDTH	+	i]	=	tmp;	
				}	
}

int	WIDTH	=	1024;	
int	HEIGHT	=	1024;	
float	input[(WIDTH+2)	*	(HEIGHT+2)];	
float	tmp_buf[WIDTH	*	(HEIGHT+2)];	
float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1.0/3,	1.0/3,	1.0/3};	

//	blur	image	horizontally	
for	(int	j=0;	j<(HEIGHT+2);	j++)	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	ii=0;	ii<3;	ii++)	
						tmp	+=	input[j*(WIDTH+2)	+	i+ii]	*	weights[ii];	
				tmp_buf[j*WIDTH	+	i]	=	tmp;	
		}	

//	blur	tmp_buf	vertically	
for	(int	j=0;	j<HEIGHT;	j++)	{	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	jj=0;	jj<3;	jj++)	
						tmp	+=	tmp_buf[(j+jj)*WIDTH	+	i]	*	weights[jj];	
				output[j*WIDTH	+	i]	=	tmp;	
		}	
}

input	
(W+2)x(H+2)

tmp_buf	
W	x	(H+2)

output	
W	x	H

input	
(W+2)x(H+2)

tmp_buf

output	
W	x	H

Wx(CHUNK_SIZE+2)

Program 1 Program 2

CMU / 清华⼤大学, Summer 2017

Both of the previous examples involved globally changing the
order of computation to improve producer-consumer locality

(improve arithmetic intensity of program)

CMU / 清华⼤大学, Summer 2017

A log of page views on the class web site

CMU / 清华⼤大学, Summer 2017

Parallel programming is very popular…

We’re taking the 1989 Tour to
the Parallel Programming Class

Your name might be Swift, but your
code can’t keep up with ours.

You kids might want to learn to handle at least
two directions before you take a stab at 16 cores.

Count me in.

CMU / 清华⼤大学, Summer 2017

 The log of page views gets quite large…
Assume weblog.txt is a large file, stored in a distributed file system, like HDFS

1TB disk

Node 0

CPU

DRAM

weblog.txt
block 0

weblog.txt
block 1

1TB disk

Node 1

CPU

DRAM

weblog.txt
block 2

weblog.txt
block 3

1TB disk

Node 3

CPU

DRAM

weblog.txt
block 6

weblog.txt
block 7

1TB disk

Node 2

CPU

DRAM

weblog.txt
block 4

weblog.txt
block 5

Below: cluster of four nodes, each node with a 1 TB disk
Contents of weblog.txt are distributed evenly in blocks across the cluster

CMU / 清华⼤大学, Summer 2017

Imagine that the agents for the bands want to know more about
the fans reading the parallel programming class web site…

For example:
“What type of mobile phone are all the fans using?”

CMU / 清华⼤大学, Summer 2017

A simple programming model
//	called	once	per	line	in	input	file	by	runtime	
//	input:		string	(one	line	from	input	file)	
//	output:	appends	(user_agent,	1)	entry	to	results	list		
void	mapper(string	line,	multimap<string,string>&	results)	{	
			string	user_agent	=	parse_requester_user_agent(line);		
			if	(is_mobile_device(user_agent))	
					results.add(user_agent,	1);	
}	

//	called	once	per	unique	key	(user_agent)	in	results	
//	values	is	a	list	of	values	associated	with	the	given	key	
void	reducer(string	key,	list<string>	values,	int&	result)	{	
				int	sum	=	0;	
				for	(v	in	values)	
							sum	+=	v;	
				result	=	sum;	
}	

//	iterator	over	lines	of	text	file	
LineByLineReader	input(“hdfs://weblog.txt”);	

//	stores	output	
Writer	output(“hdfs://…”);	

//	do	work	
runMapReduceJob(mapper,	reducer,	input,	output);

(The code above computes the count of page views by each type of mobile phone.)

CMU / 清华⼤大学, Summer 2017

Let’s design an implementation of
runMapReduceJob

CMU / 清华⼤大学, Summer 2017

Step 1: running the mapper function

Node 0

weblog.txt
block 0

Disk

CPU

//	called	once	per	line	in	file	
void	mapper(string	line,	multimap<string,string>&	results)	{	
			string	user_agent	=	parse_requester_user_agent(line);		
			if	(is_mobile_device(user_agent))	
					results.add(user_agent,	1);	
}	

//	called	once	per	unique	key	in	results	
void	reducer(string	key,	list<string>	values,	int&	result)	{	
				int	sum	=	0;	
				for	(v	in	values)	
							sum	+=	v;	
				result	=	sum;	
}	

LineByLineReader	input(“hdfs://weblog.txt”);	
Writer	output(“hdfs://…”);	
runMapReduceJob(mapper,	reducer,	input,	output);

weblog.txt
block 1

Node 1

weblog.txt
block 2

Disk

CPU

weblog.txt
block 3

Node 2

weblog.txt
block 4

Disk

CPU

weblog.txt
block 5

Node 3

weblog.txt
block 6

Disk

CPU

weblog.txt
block 7

Step 1: run mapper function on all lines of file
Question: How to assign work to nodes?

Idea 2: data distribution based
assignment: Each node processes lines
in blocks of input file that are stored
locally.

Idea 1: use work queue for
list of input blocks to process
Dynamic assignment: free node
takes next available block

block 0
block 1

block 2

…. . .

CMU / 清华⼤大学, Summer 2017

Steps 2 and 3: gathering data, running the reducer

Node 0

weblog.txt
block 0

Disk

CPU

//	called	once	per	line	in	file	
void	mapper(string	line,	map<string,string>	results)	{	
			string	user_agent	=	parse_requester_user_agent(line);		
			if	(is_mobile_device(user_agent))	
					results.add(user_agent,	1);	
}	

//	called	once	per	unique	key	in	results	
void	reducer(string	key,	list<string>	values,	int&	result)	{	
				int	sum	=	0;	
				for	(v	in	values)	
							sum	+=	v;	
				result	=	sum;	
}	

LineByLineReader	input(“hdfs://weblog.txt”);	
Writer	output(“hdfs://…”);	
runMapReduceJob(mapper,	reducer,	input,	output);

weblog.txt
block 1

Step 2: Prepare intermediate data for reducer
Step 3: Run reducer function on all keys
Question: how to assign reducer tasks?
Question: how to get all data for one key to the
correct worker node?

Node 1

weblog.txt
block 2

Disk

CPU

weblog.txt
block 3

Node 2

weblog.txt
block 4

Disk

CPU

weblog.txt
block 5

Node 3

weblog.txt
block 6

Disk

CPU

weblog.txt
block 7

Safari iOS
Chrome

Safari iWatch

…

Keys to reduce:
(generated by mapper):

Chrome Glass

Safari iOS values 0

Chrome values 0

Safari iOS values 1

Chrome values 1

Safari iOS values 2

Chrome values 2

Safari iOS values 3

Chrome values 3

Safari iWatch
values 3

Chrome Glass
values 0

CMU / 清华⼤大学, Summer 2017

Node 0

weblog.txt
block 0

Disk

CPU

//	gather	all	input	data	for	key,	then	execute	reducer	
//	to	produce	final	result	
void	runReducer(string	key,	reducer,	result)	{	
			list<string>	inputs;	
			for	(n	in	nodes)	{	
								filename	=	get_filename(key,	n);	
								read	lines	of	filename,	append	into	inputs;	
			}	
			reducer(key,	inputs,	result);	
}

weblog.txt
block 1

Step 2: Prepare intermediate data for reducer.
Step 3: Run reducer function on all keys.
Question: how to assign reducer tasks?
Question: how to get all data for key onto the
correct worker node?

Node 1

weblog.txt
block 2

Disk

CPU

weblog.txt
block 3

Node 2

weblog.txt
block 4

Disk

CPU

weblog.txt
block 5

Node 3

weblog.txt
block 6

Disk

CPU

weblog.txt
block 7

Safari iOS
Chrome

Safari iWatch

…

Keys to reduce:
(generated by mapper):

Chrome Glass

Safari iOS values 0

Chrome values 0

Safari iOS values 1

Chrome values 1

Safari iOS values 2

Chrome values 2

Safari iOS values 3

Chrome values 3

Safari iWatch
values 3

Chrome Glass
values 0

Example:
Assign Safari iOS to Node 0

Steps 2 and 3: gathering data, running the reducer

CMU / 清华⼤大学, Summer 2017

Additional implementation challenges at scale

Node 0

weblog.txt
block …

Disk
weblog.txt

block …

CPU

Node 1

weblog.txt
block …

Disk
weblog.txt

block …

CPU

Node 2

weblog.txt
block …

Disk
weblog.txt

block …

CPU

Node 3

weblog.txt
block …

Disk
weblog.txt

block …

CPU

Node 4

weblog.txt
block …

Disk
weblog.txt

block …

CPU

Node 5

weblog.txt
block …

Disk
weblog.txt

block …

CPU

Node 6

weblog.txt
block …

Disk
weblog.txt

block …

CPU

Node 7

weblog.txt
block …

Disk
weblog.txt

block …

CPU

Node 8

weblog.txt
block …

Disk
weblog.txt

block …

CPU

Node 9

weblog.txt
block …

Disk
weblog.txt

block …

CPU

Node 10

weblog.txt
block …

Disk
weblog.txt

block …

CPU

Node 11

weblog.txt
block …

Disk
weblog.txt

block …

CPU

Node 996

weblog.txt
block …

Disk
weblog.txt

block …

CPU

Node 997

weblog.txt
block …

Disk
weblog.txt

block …

CPU

Node 998

weblog.txt
block …

Disk
weblog.txt

block …

CPU

Node 999

weblog.txt
block …

Disk
weblog.txtbl

ock …

CPU

. . .

Nodes may fail during
program execution

Some nodes may run
slower than others
(due to different amounts of
work, heterogeneity in the
cluster, etc..)

CMU / 清华⼤大学, Summer 2017

Job scheduler responsibilities

▪ Exploit data locality: “move computation to the data”
- Run mapper jobs on nodes that contain input files

- Run reducer jobs on nodes that already have most of data for a certain key

▪ Handling node failures
- Scheduler detects job failures and reruns job on new machines

- This is possible since inputs reside in persistent storage (distributed file system)

- Scheduler duplicates jobs on multiple machines (reduce overall processing latency
incurred by node failures)

▪ Handling slow machines
- Scheduler may even duplicate jobs on multiple machines in case one runs slow

CMU / 清华⼤大学, Summer 2017

runMapReduceJob problems?
▪ Permits only a very simple program structure

- Programs must be structured as: map, followed by reduce by key

- See DryadLINQ for generalization to DAGs

▪ Iterative algorithms must load from disk each iteration
- Recall last lecture on graph processing:

void	pagerank_mapper(graphnode	n,	map<string,string>	results)	{	
			float	val	=	compute	update	value	for	n	
			for	(dst	in	outgoing	links	from	n)	
					results.add(dst.node,	val);	
}	

void	pagerank_reducer(graphnode	n,	list<float>	values,	float&	result)	{	
				float	sum	=	0.0;	
				for	(v	in	values)	
							sum	+=	v;	
				result	=	sum;	
}	

for	(i	=	0	to	NUM_ITERATIONS)	{	
			input	=	load	graph	from	last	iteration	
			output	=	file	for	this	iteration	output	
			runMapReduceJob(pagerank_mapper,	pagerank_reducer,	result[i-1],	result[i]);	
}

CMU / 清华⼤大学, Summer 2017

in-memory, fault-tolerant distributed computing
http://spark.apache.org/

[Zaharia et al. NSDI 2012]

CMU / 清华⼤大学, Summer 2017

Goals
▪ Programming model for cluster-scale computations where

there is significant reuse of intermediate datasets
- Iterative machine learning and graph algorithms

- Interactive data mining: load large dataset into aggregate memory of
cluster and then perform multiple ad-hoc queries

▪ Don’t want incur inefficiency of writing intermediates to
persistent distributed file system (want to keep it in memory)
- Challenge: efficiently implementing fault tolerance for large-scale

distributed in-memory computations.

CMU / 清华⼤大学, Summer 2017

Fault tolerance for in-memory calculations
▪ Replicate all computations

- Expensive solution: decreases peak throughput

▪ Checkpoint and rollback
- Periodically save state of program to persistent storage
- Restart from last checkpoint on node failure

▪ Maintain log of updates (commands and data)
- High overhead for maintaining logs

Recall map-reduce solutions:
- Checkpoints after each map/reduce step by writing results to file system
- Scheduler’s list of outstanding (but not yet complete) jobs is a log
- Functional structure of programs allows for restart at granularity of a single

mapper or reducer invocation (don’t have to restart entire program)

CMU / 清华⼤大学, Summer 2017

Resilient distributed dataset (RDD)
Spark’s key programming abstraction:

- Read-only ordered collection of records (immutable)
- RDDs can only be created by deterministic transformations on data in

persistent storage or on existing RDDs
- Actions on RDDs return data to application

//	create	RDD	from	file	system	data	
var	lines	=	spark.textFile(“hdfs://weblog.txt”);	

//	create	RDD	using	filter()	transformation	on	lines	
var	mobileViews	=	lines.filter((x:	String)	=>	isMobileClient(x));	

//	another	filter()	transformation	
var	safariViews	=	mobileViews.filter((x:	String)	=>	x.contains(“Safari”));	

//	then	count	number	of	elements	in	RDD	via	count()	action	
var	numViews	=	safariViews.count();

lines

mobileViews

safariViews

numViews

.count()

.filter(...)

.filter(...)

.textFile(…)

weblog.txt

int

RDDs

CMU / 清华⼤大学, Summer 2017

Repeating the map-reduce example
//	1.	create	RDD	from	file	system	data	
//	2.	create	RDD	with	only	lines	from	mobile	devices	
//	3.	create	RDD	with	elements	of	type	(String,Int)	from	line	string	
//	4.	group	elements	by	key	
//	5.	call	provided	reduction	function	on	all	keys	to	count	views	
var	perAgentCounts	=		spark.textFile(“hdfs://weblog.txt”)	
																											.filter(x	=>	isMobileDevice(x))	
																											.map(x	=>	(parseUserAgent(x),1));	
																											.reduceByKey((x,y)	=>	x+y)	
																											.collect();

lines

PerAgentCounts

.collect()

.map(parseUserAgent(…))

.filter(isMobileClient(…)))

.textFile(…)

weblog.txtArray[String,int]

.reduceByKey(…)

“Lineage”:
Sequence of RDD operations

needed to compute output

CMU / 清华⼤大学, Summer 2017

Another Spark program
//	create	RDD	from	file	system	data	
var	lines	=	spark.textFile(“hdfs://weblog.txt”);	

//	create	RDD	using	filter()	transformation	on	lines	
var	mobileViews	=	lines.filter((x:	String)	=>	isMobileDevice(x));	

//	instruct	Spark	runtime	to	try	to	keep	mobileViews	in	memory	
mobileViews.persist();	

//	create	a	new	RDD	by	filtering	mobileViews	
//	then	count	number	of	elements	in	new	RDD	via	count()	action	
var	numViews	=	mobileViews.filter(_.contains(“Safari”)).count();	

//	1.	create	new	RDD	by	filtering	only	Chrome	views	
//	2.	for	each	element,	split	string	and	take	timestamp	of	
//				page	view	
//	3.	convert	RDD	to	a	scalar	sequence	(collect()	action)	
var	timestamps	=	mobileViews.filter(_.contains(“Chrome”))	
																												.map(_.split(“	”)(0))	
																												.collect();

lines

mobileViews

timestamps

.collect()

.filter(contains(“Safari”);

.filter(isMobileClient(…)))

.textFile(…)

weblog.txt

.map(split(…)).count()

numViews

.filter(contains(“Chrome”);

CMU / 清华⼤大学, Summer 2017

Transformations

map(f : T) U) : RDD[T]) RDD[U]
filter(f : T) Bool) : RDD[T]) RDD[T]

flatMap(f : T) Seq[U]) : RDD[T]) RDD[U]
sample(fraction : Float) : RDD[T]) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)]) RDD[(K, Seq[V])]
reduceByKey(f : (V,V)) V) : RDD[(K, V)]) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues(f : V) W) : RDD[(K, V)]) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)]) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)]) RDD[(K, V)]

Actions

count() : RDD[T]) Long
collect() : RDD[T]) Seq[T]

reduce(f : (T,T)) T) : RDD[T]) T
lookup(k : K) : RDD[(K, V)]) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map

contribs0

ranks1

contribs1

ranks2

contribs2

links
join

reduce + map

. . .

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.

Transformations

map(f : T) U) : RDD[T]) RDD[U]
filter(f : T) Bool) : RDD[T]) RDD[T]

flatMap(f : T) Seq[U]) : RDD[T]) RDD[U]
sample(fraction : Float) : RDD[T]) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)]) RDD[(K, Seq[V])]
reduceByKey(f : (V,V)) V) : RDD[(K, V)]) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues(f : V) W) : RDD[(K, V)]) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)]) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)]) RDD[(K, V)]

Actions

count() : RDD[T]) Long
collect() : RDD[T]) Seq[T]

reduce(f : (T,T)) T) : RDD[T]) T
lookup(k : K) : RDD[(K, V)]) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map

contribs0

ranks1

contribs1

ranks2

contribs2

links
join

reduce + map

. . .

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.

RDD transformations and actions
Transformations: (data parallel operators taking an input RDD to a new RDD)

Actions: (provide data back to the “host” application)

CMU / 清华⼤大学, Summer 2017

How do we implement RDDs?
In particular, how should they be stored?

var	lines	=	spark.textFile(“hdfs://weblog.txt”);	
var	lower	=	lines.map(_.toLower());	
var	mobileViews	=	lower.filter(x	=>	isMobileDevice(x));	
var	howMany	=	mobileViews.count();

Node 0

weblog.txt
block 0

Disk

CPU

weblog.txt
block 1

DRAM

Node 1

weblog.txt
block 2

Disk

CPU

weblog.txt
block 3

DRAM

Node 2

weblog.txt
block 4

Disk

CPU

weblog.txt
block 5

DRAM

Node 3

weblog.txt
block 6

Disk

CPU

weblog.txt
block 7

DRAM

Question: should we think of RDD’s like arrays?

CMU / 清华⼤大学, Summer 2017

How do we implement RDDs?
In particular, how should they be stored?

var	lines	=	spark.textFile(“hdfs://weblog.txt”);	
var	lower	=	lines.map(_.toLower());	
var	mobileViews	=	lower.filter(x	=>	isMobileDevice(x));	
var	howMany	=	mobileViews.count();

Node 0

weblog.txt
block 0

Disk

CPU

weblog.txt
block 1

DRAM
lines

(partition 0)
lower

(partition 0)
mobileViews

(part 0)

lines
(partition 1)

lower
(partition 1)
mobileViews

(part 1)

Node 1

weblog.txt
block 2

Disk

CPU

weblog.txt
block 3

DRAM
lines

(partition 2)
lower

(partition 2)
mobileViews

(part 2)

lines
(partition 3)

lower
(partition 3)
mobileViews

(part 3)

Node 2

weblog.txt
block 4

Disk

CPU

weblog.txt
block 5

DRAM
lines

(partition 4)
lower

(partition 4)
mobileViews

(part 4)

lines
(partition 5)

lower
(partition 5)
mobileViews

(part 5)

Node 2

weblog.txt
block 6

Disk

CPU

weblog.txt
block 7

DRAM
lines

(partition 6)
lower

(partition 6)
mobileViews

(part 6)

lines
(partition 7)

lower
(partition 7)
mobileViews

(part 7)

In-memory representation would be huge! (larger than original file on disk)

CMU / 清华⼤大学, Summer 2017

RDD partitioning and dependencies

Node 0 Node 1 Node 2 Node 3

block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7

.load()

lines
part 0

var	lines	=	spark.textFile(“hdfs://weblog.txt”);	
var	lower	=	lines.map(_.toLower());	
var	mobileViews	=	lower.filter(x	=>	isMobileDevice(x));	
var	howMany	=	mobileViews.count();

lines
part 1

lines
part 2

lines
part 3

lines
part 4

lines
part 5

lines
part 6

lines
part 7

.filter()

mobileViews
part 0

mobileViews
part 1

mobileViews
part 2

mobileViews
part 3

mobileViews
part 4 mobileViews

part5

mobileViews
part 6

mobileViews
part7

Black lines show dependencies between RDD partitions.

lower
part 0

lower
part 1

lower
part 2

lower
part 3

lower
part 4

lower
part 5

lower
part 6

lower
part 7

.map()

(0-1000) (1000-2000)

(0-1000) (1000-2000)

(0-1000) (1000-2000)

(670 elements)
(212 elements)

CMU / 清华⼤大学, Summer 2017

Implementing sequence of RDD ops efficiently
var	lines	=	spark.textFile(“hdfs://weblog.txt”);	
var	lower	=	lines.map(_.toLower());	
var	mobileViews	=	lower.filter(x	=>	isMobileDevice(x));	
var	howMany	=	mobileViews.count();

int	count	=	0;	
while	(inputFile.eof())	{	
			string	line	=	inputFile.readLine();	
			string	lower	=	line.toLower;	
			if	(isMobileClient(lower))	
					count++;	
}

Recall “loop fusion” examples from opening slides of lecture

The following code stores only a line of the log file in memory, and
only reads input data from disk once (“streaming” solution)

CMU / 清华⼤大学, Summer 2017

A simple interface for RDDs
var	lines	=	spark.textFile(“hdfs://weblog.txt”);	
var	lower	=	lines.map(_.toLower());	
var	mobileViews	=	lower.filter(x	=>	isMobileDevice(x));	
var	howMany	=	mobileViews.count();

RDDFromMap::next()	{	
			var	el	=	parent.next();	
			return	map_func(el);				
}

RDDFromFilter::next()	{	
		while	(parent.hasMoreElements())	{	
				var	el	=	parent.next();	
				if	(filter_func(el))	
						return	el;		
}

RDDFromTextFile::next()	{	
			return	inputFile.readLine();	
}

//	count	action	(forces	evaluation	of	RDD)	
RDD::count()	{	
			int	count	=	0;	
			while	(hasMoreElements())	{	
						var	el	=	next();	
						count++;	
			}	
}

RDD::hasMoreElements()	{	
			parent.hasMoreElements();	
}	

//	overloaded	since	no	parent	exists	
RDDFromTextFile::hasMoreElements()	{	
			return	!inputFile.eof();	
}

//	create	RDD	by	mapping	map_func	onto	
input	(parent)	RDD	
RDD::map(RDD	parent,	map_func)	{	
			return	new	RDDFromMap(parent,	map_func);	
}

//	create	RDD	from	text	file	on	disk	
RDD::textFile(string	filename)	{	
			return	new	RDDFromTextFile(open(filename));	
}

//	create	RDD	by	filtering	input	(parent)	RDD	
RDD::filter(RDD	parent,	filter_func)	{	
			return	new	RDDFromFilter(parent,	filter_func);	
}

CMU / 清华⼤大学, Summer 2017

Narrow dependencies

Node 0 Node 1 Node 2 Node 3

block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7

.load()

lines
part 0

var	lines	=	spark.textFile(“hdfs://weblog.txt”);	
var	lower	=	lines.map(_.toLower());	
var	mobileViews	=	lower.filter(x	=>	isMobileDevice(x));	
var	howMany	=	mobileViews.count();

lines
part 1

lines
part 2

lines
part 3

lines
part 4

lines
part 5

lines
part 6

lines
part 7

.filter()

mobileViews
part 0

mobileViews
part 1

mobileViews
part 2

mobileViews
part 3

mobileViews
part 4 mobileViews

part5

mobileViews
part 6

mobileViews
part7

“Narrow dependencies” = each partition of parent RDD referenced by at most one child RDD partition
- Allows for fusing of operations (here: can apply map and then filter all at once on input element)
- In this example: no communication between nodes of cluster (communication of one int at end to perform

count() reduction)

lower
part 0

lower
part 1

lower
part 2

lower
part 3

lower
part 4

lower
part 5

lower
part 6

lower
part 7

.map()

(0-1000) (1000-2000)

(0-1000) (1000-2000)

(0-1000) (1000-2000)

(670 elements)
(212 elements)

CMU / 清华⼤大学, Summer 2017

Wide dependencies

RDD_A
part 0

.groupByKey()

RDD_A
part 1

RDD_A
part 2

RDD_A
part 3

RDD_B
part 0

RDD_B
part 1

RDD_B
part 2

RDD_B
part 3

groupByKey: RDD[(K,V)] → RDD[(K,Seq[V])]

▪ Wide dependencies = each partition of parent RDD referenced by multiple child RDD partitions
▪ Challenges:

- Must compute all of RDD_A before computing RDD_B
- Example: groupByKey() may induce all-to-all communication as shown above

- May trigger significant recomputation of ancestor lineage upon node failure
(I will address resilience in a few slides)

“Make a new RDD where each element is a sequence containing all values from the parent RDD with
the same key.”

CMU / 清华⼤大学, Summer 2017

Cost of operations depends on partitioning
join: RDD[(K,V)], RDD[(K,W)] → RDD[(K,(V,W))]

RDD_C
part 0

RDD_C
part 1

RDD_C
part 6

RDD_C
part 9

.join()

RDD_A
part 0

RDD_A
part 1

RDD_A
part 2

RDD_A
part 3

RDD_B
part 0

RDD_B
part 1

RDD_B
part 2

RDD_B
part 3

(“Kayvon”, 1)
(“Teguh”, 23)

(“Kayvon”, “fizz”)
(“Teguh”, “buzz”)

(“Randy”, 1024)
(“Ravi”, 32)

(“Randy”, “wham”)
(“Ravi”, “pow”)

(“Alex”, 50)
(“Riya”, 9)

(“Alex”, “splat”)
(“Riya”, “pop”)

(“Tao”, 10)
(“Junhong”, 100)

(“Tao”, “slap”)
(“Junhong”, “bam”)

RDD_C
part 0

RDD_C
part 1

RDD_C
part 6

RDD_C
part 9

.join()

RDD_A
part 0

RDD_A
part 1

RDD_A
part 2

RDD_A
part 3

RDD_B
part 0

RDD_B
part 1

RDD_B
part 2

RDD_B
part 3

(“Kayvon”, 1)
(“Teguh”, 23)

(“Kayvon”, “fizz”)
(“Alex”, “splat”)

(“Randy”, 1024)
(“Ravi”, 32)

(“Riya”, “pop”)
(“Tao”, “slap”)

(“Alex”, 50)
(“Riya”, 9)

(“Ravi”, “pow”)
(“Junhong”, “bam”)

(“Tao”, 10)
(“Junhong”, 100)

(“Randy”, “wham”)
(“Teguh”, “buzz”)

(“Kayvon”, (1,”fizz”))
(“Teguh”, (23,”buzz”))

(“Randy”, (1024,”wham”))
(“Ravi”, (32,”pow”))

(“Alex”, (50,”splat”))
(“Riya”, (9,”pop”))

(“Tao”, (10,”slap”))
(“Junhong”, (100,”bam”))

RDD_A and RDD_B have different hash partitions: join creates wide dependencies

RDD_A and RDD_B have same hash partition: join only creates narrow dependencies

(“Kayvon”, (1,”fizz”))
(“Teguh”, (23,”buzz”))

(“Randy”, (1024,”wham”))
(“Ravi”, (32,”pow”))

(“Alex”, (50,”splat”))
(“Riya”, (9,”pop”))

(“Tao”, (10,”slap”))
(“Junhong”, (100,”bam”))

Assume data in RDD_A and RDD_B are partitioned by key: hash username to partition id

CMU / 清华⼤大学, Summer 2017

PartitionBy() transformation
▪ Inform Spark on how to partition an RDD

- e.g., HashPartitioner, RangePartitioner
//	create	RDD	from	file	system	data	
var	lines	=	spark.textFile(“hdfs://weblog.txt”);	
var	clientInfo	=	spark.textFile(“hdfs://clientssupported.txt”);	//	(useragent,	“yes”/“no”)	

//	create	RDD	using	filter()	transformation	on	lines	
var	mobileViews	=	lines.filter(x	=>	isMobileDevice(x)).map(x	=>	parseUserAgent(x));	

//	HashPartitioner	maps	keys	to	integers	
var	partitioner	=	spark.HashPartitioner(100);	

//	inform	Spark	of	partition	
//	.persist()	also	instructs	Spark	to	try	to	keep	dataset	in	memory	
var	mobileViewPartitioned	=	mobileViews.partitionBy(partitioner)	
																																							.persist();	
var	clientInfoPartitioned	=	clientInfo.partitionBy(partitioner)	
																																							.persist();	

//	join	useragents	with	whether	they	are	supported	or	not	supported	
//	Note:	this	join	only	creates	narrow	dependencies	due	to	the	explicit	partitioning	above	
void	joined	=	mobileViewPartitioned.join(clientInfoPartitioned);

▪ .persist():
- Inform Spark this RDD’s contents should be retained in memory
- .persist(RELIABLE) = store contents in durable storage (like a checkpoint)

hdfs://client

CMU / 清华⼤大学, Summer 2017

Scheduling Spark computations

Actions (e.g., save()) trigger evaluation of Spark lineage graph.

RDD_A
part 0

RDD_A
part 1

RDD_A
part 2

RDD_B
part 0

RDD_B
part 1

RDD_B
part 2

.groupByKey()

RDD_C
part 0

RDD_C
part 1

RDD_D
part 0

RDD_D
part 1

RDD_E
part 0

RDD_E
part 1

RDD_F
part 0

RDD_F
part 1

RDD_F
part 2

RDD_F
part 3

.map()

.union()

.join()

RDD_G
part 0

RDD_G
part 1

RDD_G
part 2

.save()

Stage 1 Computation Stage 2 Computation

Stage 1 Computation: do nothing since input already materialized in memory
Stage 2 Computation: evaluate map in fused manner, only actually materialize RDD F
Stage 3 Computation: execute join (could stream the operation to disk, do not need to materialize)

block 1block 0 block 2 = materialized RDD

CMU / 清华⼤大学, Summer 2017

Implementing resilience via lineage
▪ RDD transformations are bulk, deterministic, and functional

- Implication: runtime can always reconstruct contents of RDD from its lineage
(the sequence of transformations used to create it)

- Lineage is a log of transformations
- Efficient: since the log records bulk data-parallel operations, overhead of

logging is low (compared to logging fine-grained operations, like in a database)

//	create	RDD	from	file	system	data	
var	lines	=	spark.textFile(“hdfs://weblog.txt”);	

//	create	RDD	using	filter()	transformation	on	lines	
var	mobileViews	=	lines.filter((x:	String)	=>	isMobileDevice(x));	

//	1.	create	new	RDD	by	filtering	only	Chrome	views	
//	2.	for	each	element,	split	string	and	take	timestamp	of	
//				page	view	(first	element)	
//	3.	convert	RDD	To	a	scalar	sequence	(collect()	action)	
var	timestamps	=	mobileView.filter(_.contains(“Chrome”))	
																											.map(_.split(“	”)(0));

lines

mobileViews

Chrome views

timestamps

.map(_.split(“ ”)(0))

.filter(...)

.filter(...)

.load(…)

CMU / 清华⼤大学, Summer 2017

var	lines							=	spark.textFile(“hdfs://weblog.txt”);	
var	mobileViews	=	lines.filter((x:	String)	=>	isMobileDevice(x));	
var	timestamps		=	mobileView.filter(_.contains(“Chrome”))	
																												.map(_.split(“	”)(0));

Upon node failure: recompute lost RDD partitions from lineage

Node 0

weblog.txt
block 0

Disk

weblog.txt
block 1

DRAM

mobileViews
part 1

mobileViews
part 0

Node 1

weblog.txt
block 2

Disk
weblog.txt

block 3

mobileViews
part 3

mobileViews
part 2

Node 2

weblog.txt
block 4

Disk

weblog.txt
block 5

mobileViews
part 5

mobileViews
part 4

Node 3

weblog.txt
block 6

Disk

weblog.txt
block 7

mobileViews
part 7

mobileViews
part 6

timestamps
part 1

CPU

timestamps
part 0

DRAM
timestamps

part 3

CPU

timestamps
part 2

DRAM
timestamps

part 5

CPU

timestamps
part 4

DRAM
timestamps

part 7

CPU

timestamps
part 6

lines

mobileViews

Chrome views

timestamps

.map(_.split(“ ”)(0))

.filter(...)

.filter(...)

.load(…)

Must reload required subset of data from disk and recompute
entire sequence of operations given by lineage to regenerate
partitions 2 and 3 of RDD timestamps.

Note: (not shown): file system data is replicated so assume blocks 2 and 3 remain accessible to all nodes

CRASH!

CMU / 清华⼤大学, Summer 2017

var	lines							=	spark.textFile(“hdfs://weblog.txt”);	
var	mobileViews	=	lines.filter((x:	String)	=>	isMobileDevice(x));	
var	timestamps		=	mobileView.filter(_.contains(“Chrome”))	
																												.map(_.split(“	”)(0));

Node 0

weblog.txt
block 0

Disk

weblog.txt
block 1

DRAM

mobileViews
part 1

mobileViews
part 0

Node 1

weblog.txt
block 2

Disk
weblog.txt

block 3

mobileViews
part 3

mobileViews
part 2

Node 2

weblog.txt
block 4

Disk

weblog.txt
block 5

mobileViews
part 5

mobileViews
part 4

Node 3

weblog.txt
block 6

Disk

weblog.txt
block 7

mobileViews
part 7

mobileViews
part 6

timestamps
part 1

CPU

timestamps
part 0

DRAM
timestamps

part 3

CPU

timestamps
part 2

DRAM
timestamps

part 5

CPU

timestamps
part 4

DRAM
timestamps

part 7

CPU

timestamps
part 6

lines

mobileViews

Chrome views

timestamps

.map(_.split(“ ”)(0))

.filter(...)

.filter(...)

.load(…)

Must reload required subset of data from disk and recompute
entire sequence of operations given by lineage to regenerate
partitions 2 and 3 of RDD timestamps.

timestamps
part 2

timestamps
part 3

Note: (not shown): file system data is replicated so assume blocks 2 and 3 remain accessible to all nodes

Upon node failure: recompute lost RDD partitions from lineage

CRASH!

CMU / 清华⼤大学, Summer 2017

Spark performance
them simpler to checkpoint than general shared mem-
ory. Because consistency is not a concern, RDDs can be
written out in the background without requiring program
pauses or distributed snapshot schemes.

6 Evaluation
We evaluated Spark and RDDs through a series of exper-
iments on Amazon EC2, as well as benchmarks of user
applications. Overall, our results show the following:
• Spark outperforms Hadoop by up to 20⇥ in itera-

tive machine learning and graph applications. The
speedup comes from avoiding I/O and deserialization
costs by storing data in memory as Java objects.

• Applications written by our users perform and scale
well. In particular, we used Spark to speed up an an-
alytics report that was running on Hadoop by 40⇥.

• When nodes fail, Spark can recover quickly by re-
building only the lost RDD partitions.

• Spark can be used to query a 1 TB dataset interac-
tively with latencies of 5–7 seconds.

We start by presenting benchmarks for iterative ma-
chine learning applications (§6.1) and PageRank (§6.2)
against Hadoop. We then evaluate fault recovery in Spark
(§6.3) and behavior when a dataset does not fit in mem-
ory (§6.4). Finally, we discuss results for user applica-
tions (§6.5) and interactive data mining (§6.6).

Unless otherwise noted, our tests used m1.xlarge EC2
nodes with 4 cores and 15 GB of RAM. We used HDFS
for storage, with 256 MB blocks. Before each test, we
cleared OS buffer caches to measure IO costs accurately.

6.1 Iterative Machine Learning Applications
We implemented two iterative machine learning appli-
cations, logistic regression and k-means, to compare the
performance of the following systems:
• Hadoop: The Hadoop 0.20.2 stable release.

• HadoopBinMem: A Hadoop deployment that con-
verts the input data into a low-overhead binary format
in the first iteration to eliminate text parsing in later
ones, and stores it in an in-memory HDFS instance.

• Spark: Our implementation of RDDs.
We ran both algorithms for 10 iterations on 100 GB

datasets using 25–100 machines. The key difference be-
tween the two applications is the amount of computation
they perform per byte of data. The iteration time of k-
means is dominated by computation, while logistic re-
gression is less compute-intensive and thus more sensi-
tive to time spent in deserialization and I/O.

Since typical learning algorithms need tens of itera-
tions to converge, we report times for the first iteration
and subsequent iterations separately. We find that shar-
ing data via RDDs greatly speeds up future iterations.

80
!

13
9!

46
!

11
5!

18
2!

82
!

76
!

62
!

3!

10
6!

87
!

33
!

0!
40!
80!

120!
160!
200!
240!

Hadoop! HadoopBM! Spark! Hadoop! HadoopBM! Spark!

Logistic Regression! K-Means!

Ite
ra

tio
n

tim
e

(s
)!

First Iteration!
Later Iterations!

Figure 7: Duration of the first and later iterations in Hadoop,
HadoopBinMem and Spark for logistic regression and k-means
using 100 GB of data on a 100-node cluster.

18
4!

11
1!

76
!

11
6!

80
!

62
!

15
!

6! 3!

0!
50!
100!
150!
200!
250!
300!

25! 50! 100!

Ite
ra

tio
n

tim
e

(s
)!

Number of machines!

Hadoop!
HadoopBinMem!
Spark!

(a) Logistic Regression

27
4!

15
7!

10
6!

19
7!

12
1!

87
!

14
3!

61
!

33
!

0!

50!

100!

150!

200!

250!

300!

25! 50! 100!

Ite
ra

tio
n

tim
e

(s
)!

Number of machines!

Hadoop !
HadoopBinMem!
Spark!

(b) K-Means

Figure 8: Running times for iterations after the first in Hadoop,
HadoopBinMem, and Spark. The jobs all processed 100 GB.

First Iterations All three systems read text input from
HDFS in their first iterations. As shown in the light bars
in Figure 7, Spark was moderately faster than Hadoop
across experiments. This difference was due to signal-
ing overheads in Hadoop’s heartbeat protocol between
its master and workers. HadoopBinMem was the slowest
because it ran an extra MapReduce job to convert the data
to binary, it and had to write this data across the network
to a replicated in-memory HDFS instance.

Subsequent Iterations Figure 7 also shows the aver-
age running times for subsequent iterations, while Fig-
ure 8 shows how these scaled with cluster size. For lo-
gistic regression, Spark 25.3⇥ and 20.7⇥ faster than
Hadoop and HadoopBinMem respectively on 100 ma-
chines. For the more compute-intensive k-means appli-
cation, Spark still achieved speedup of 1.9⇥ to 3.2⇥.

Understanding the Speedup We were surprised to
find that Spark outperformed even Hadoop with in-
memory storage of binary data (HadoopBinMem) by a
20⇥ margin. In HadoopBinMem, we had used Hadoop’s
standard binary format (SequenceFile) and a large block
size of 256 MB, and we had forced HDFS’s data di-
rectory to be on an in-memory file system. However,
Hadoop still ran slower due to several factors:
1. Minimum overhead of the Hadoop software stack,

2. Overhead of HDFS while serving data, and

HadoopBM = Hadoop Binary In-Memory (convert text input to binary, store in in-memory version of HDFS)

Anything else puzzling here?
Q. Wait, the baseline parses text input in each iteration of an iterative algorithm? A. Yes.

HadoopBM’s first iteration is slow because it runs an extra Hadoop job to copy binary form of input
data to in memory HDFS

Accessing data from HDFS, even if in memory, has high overhead:
- Multiple mem copies in file system + a checksum
- Conversion from serialized form to Java object

(100GB of data on a
100 node cluster)

CMU / 清华⼤大学, Summer 2017

Caution: “scale out” is not the entire story
▪ Distributed systems designed for cloud execution address many difficult challenges, and have

been instrumental in the explosion of “big-data” computing and large-scale analytics
- Scale-out parallelism to many machines
- Resiliency in the face of failures
- Complexity of managing clusters of machines

▪ But scale out is not the whole story:

name twitter rv [11] uk-2007-05 [4]
nodes 41,652,230 105,896,555
edges 1,468,365,182 3,738,733,648
size 5.76GB 14.72GB

Table 1: The “twitter rv” and “uk-2007-05” graphs.

fn PageRank20(graph: GraphIterator, alpha: f32) {
let mut a = Vec::from_elem(graph.nodes, 0f32);
let mut b = Vec::from_elem(graph.nodes, 0f32);
let mut d = Vec::from_elem(graph.nodes, 0u32);

graph.map_edges(|x, y| { d[x] += 1; });

for iter in range(0u, 20u) {
for i in range(0u, graph.nodes) {

b[i] = alpha * a[i] / d[i];
a[i] = 1f32 - alpha;

}

graph.map_edges(|x, y| { a[y] += b[x]; });
}

}

Figure 2: Twenty PageRank iterations.

2 Basic Graph Computations
Graph computation has featured prominently in recent
SOSP and OSDI conferences, and represents one of the
simplest classes of data-parallel computation that is not
trivially parallelized. Conveniently, Gonzalez et al. [8]
evaluated the latest versions of several graph-processing
systems in 2014. We implement each of their tasks using
single-threaded C# code, and evaluate the implementa-
tions on the same datasets they use (see Table 1).1

Our single-threaded implementations use a simple
Boost-like graph traversal pattern. A GraphIterator
type accepts actions on edges, and maps the action across
all graph edges. The implementation uses unbuffered IO
to read binary edge data from SSD and maintains per-
node state in memory backed by large pages (2MB).

2.1 PageRank
PageRank is an computation on directed graphs which it-
eratively updates a rank maintained for each vertex [16].
In each iteration a vertex’s rank is uniformly divided
among its outgoing neighbors, and then set to be the ac-
cumulation of scaled rank from incoming neighbors. A
dampening factor alpha is applied to the ranks, the lost
rank distributed uniformly among all nodes. Figure 2
presents code for twenty PageRank iterations.

1Our C# implementations required some manual in-lining, and are
less terse than our Rust implementations. In the interest of clarity, we
present the latter in this paper. Both versions of the code produce com-
parable results, and will be made available online.

scalable system cores twitter uk-2007-05
GraphChi [10] 2 3160s 6972s
Stratosphere [6] 16 2250s -
X-Stream [17] 16 1488s -
Spark [8] 128 857s 1759s
Giraph [8] 128 596s 1235s
GraphLab [8] 128 249s 833s
GraphX [8] 128 419s 462s
Single thread (SSD) 1 300s 651s
Single thread (RAM) 1 275s -

Table 2: Reported elapsed times for 20 PageRank it-
erations, compared with measured times for single-
threaded implementations from SSD and from RAM.
GraphChi and X-Stream report times for 5 Page-
Rank iterations, which we multiplied by four.

fn LabelPropagation(graph: GraphIterator) {
let mut label = Vec::from_fn(graph.nodes, |x| x);
let mut done = false;

while !done {
done = true;
graph.map_edges(|x, y| {

if label[x] != label[y] {
done = false;
label[x] = min(label[x], label[y]);
label[y] = min(label[x], label[y]);

}
});

}
}

Figure 3: Label propagation.

Table 2 compares the reported times from several
systems against a single-threaded implementations of
PageRank, reading the data either from SSD or from
RAM. Other than GraphChi and X-Stream, which re-
read edge data from disk, all systems partition the graph
data among machines and load it in to memory. Other
than GraphLab and GraphX, systems partition edges by
source vertex; GraphLab and GraphX use more sophisti-
cated partitioning schemes to reduce communication.

No scalable system in Table 2 consistently out-
performs a single thread, even when the single thread
repeatedly re-reads the data from external storage. Only
GraphLab and GraphX outperform any single-threaded
executions, although we will see in Section 3.1 that the
single-threaded implementation outperforms these sys-
tems once it re-orders edges in a manner akin to the par-
titioning schemes these systems use.

2.2 Connected Components
The connected components of an undirected graph are
disjoint sets of vertices such that all vertices within a set

2

Further optimization of the baseline
brought time down to 110s

20 Iterations of Page Rank
name twitter rv [11] uk-2007-05 [4]
nodes 41,652,230 105,896,555
edges 1,468,365,182 3,738,733,648
size 5.76GB 14.72GB

Table 1: The “twitter rv” and “uk-2007-05” graphs.

fn PageRank20(graph: GraphIterator, alpha: f32) {
let mut a = Vec::from_elem(graph.nodes, 0f32);
let mut b = Vec::from_elem(graph.nodes, 0f32);
let mut d = Vec::from_elem(graph.nodes, 0u32);

graph.map_edges(|x, y| { d[x] += 1; });

for iter in range(0u, 20u) {
for i in range(0u, graph.nodes) {

b[i] = alpha * a[i] / d[i];
a[i] = 1f32 - alpha;

}

graph.map_edges(|x, y| { a[y] += b[x]; });
}

}

Figure 2: Twenty PageRank iterations.

2 Basic Graph Computations
Graph computation has featured prominently in recent
SOSP and OSDI conferences, and represents one of the
simplest classes of data-parallel computation that is not
trivially parallelized. Conveniently, Gonzalez et al. [8]
evaluated the latest versions of several graph-processing
systems in 2014. We implement each of their tasks using
single-threaded C# code, and evaluate the implementa-
tions on the same datasets they use (see Table 1).1

Our single-threaded implementations use a simple
Boost-like graph traversal pattern. A GraphIterator
type accepts actions on edges, and maps the action across
all graph edges. The implementation uses unbuffered IO
to read binary edge data from SSD and maintains per-
node state in memory backed by large pages (2MB).

2.1 PageRank
PageRank is an computation on directed graphs which it-
eratively updates a rank maintained for each vertex [16].
In each iteration a vertex’s rank is uniformly divided
among its outgoing neighbors, and then set to be the ac-
cumulation of scaled rank from incoming neighbors. A
dampening factor alpha is applied to the ranks, the lost
rank distributed uniformly among all nodes. Figure 2
presents code for twenty PageRank iterations.

1Our C# implementations required some manual in-lining, and are
less terse than our Rust implementations. In the interest of clarity, we
present the latter in this paper. Both versions of the code produce com-
parable results, and will be made available online.

scalable system cores twitter uk-2007-05
GraphChi [10] 2 3160s 6972s
Stratosphere [6] 16 2250s -
X-Stream [17] 16 1488s -
Spark [8] 128 857s 1759s
Giraph [8] 128 596s 1235s
GraphLab [8] 128 249s 833s
GraphX [8] 128 419s 462s
Single thread (SSD) 1 300s 651s
Single thread (RAM) 1 275s -

Table 2: Reported elapsed times for 20 PageRank it-
erations, compared with measured times for single-
threaded implementations from SSD and from RAM.
GraphChi and X-Stream report times for 5 Page-
Rank iterations, which we multiplied by four.

fn LabelPropagation(graph: GraphIterator) {
let mut label = Vec::from_fn(graph.nodes, |x| x);
let mut done = false;

while !done {
done = true;
graph.map_edges(|x, y| {

if label[x] != label[y] {
done = false;
label[x] = min(label[x], label[y]);
label[y] = min(label[x], label[y]);

}
});

}
}

Figure 3: Label propagation.

Table 2 compares the reported times from several
systems against a single-threaded implementations of
PageRank, reading the data either from SSD or from
RAM. Other than GraphChi and X-Stream, which re-
read edge data from disk, all systems partition the graph
data among machines and load it in to memory. Other
than GraphLab and GraphX, systems partition edges by
source vertex; GraphLab and GraphX use more sophisti-
cated partitioning schemes to reduce communication.

No scalable system in Table 2 consistently out-
performs a single thread, even when the single thread
repeatedly re-reads the data from external storage. Only
GraphLab and GraphX outperform any single-threaded
executions, although we will see in Section 3.1 that the
single-threaded implementation outperforms these sys-
tems once it re-orders edges in a manner akin to the par-
titioning schemes these systems use.

2.2 Connected Components
The connected components of an undirected graph are
disjoint sets of vertices such that all vertices within a set

2

scalable system cores twitter uk-2007-05
Stratosphere [6] 16 950s -
X-Stream [17] 16 1159s -
Spark [8] 128 1784s � 8000s
Giraph [8] 128 200s � 8000s
GraphLab [8] 128 242s 714s
GraphX [8] 128 251s 800s
Single thread (SSD) 1 153s 417s

Table 3: Reported elapsed times for label propa-
gation, compared with measured times for single-
threaded label propagation from SSD.

are mutually reachable from each other.
In the distributed setting, the most common algorithm

for computing connectivity is label propagation [9] (Fig-
ure 3). In label propagation, each vertex maintains a label
(initially its own ID), and iteratively updates its label to
be the minimum of all its neighbors’ labels and its cur-
rent label. The process propagates the smallest label in
each component to all vertices in the component, and the
iteration converges once this happens in every compo-
nent. The updates are commutative and associative, and
consequently admit a scalable implementation [5].

Table 3 compares the reported running times of la-
bel propagation on several data-parallel systems with a
single-threaded implementation reading from SSD. De-
spite using orders of magnitude less hardware, single-
threaded label propagation is significantly faster than any
system above.

3 Better Baselines
The single-threaded implementations we have presented
were chosen to be the simplest, most direct implementa-
tions we could think of. There are several standard ways
to improve them, yielding single-threaded implementa-
tions which strictly dominate the reported performance
of the systems we have considered, in some cases by an
additional order of magnitude.

3.1 Improving graph layout
Our single-threaded algorithms take as inputs edge itera-
tors, and while they have no requirements on the order in
which edges are presented, the order does affect perfor-
mance. Up to this point, our single-threaded implemen-
tations have enumerated edges in vertex order, whereby
all edges for one vertex are presented before moving
on to the next vertex. Both GraphLab and GraphX in-
stead partition the edges among workers, without requir-
ing that all edges from a single vertex belong to the same

scalable system cores twitter uk-2007-05
GraphLab 128 249s 833s
GraphX 128 419s 462s
Vertex order (SSD) 1 300s 651s
Vertex order (RAM) 1 275s -
Hilbert order (SSD) 1 242s 256s
Hilbert order (RAM) 1 110s -

Table 4: Reported elapsed times for 20 PageRank it-
erations, compared with measured times for single-
threaded implementations from SSD and from RAM.
The single-threaded times use identical algorithms,
but with different edge orders.

worker, which enables those systems to exchange less
data [7, 8].

A single-threaded graph algorithm does not perform
explicit communication, but edge ordering can have a
pronounced effect on the cache behavior. For example,
the edge ordering described by a Hilbert curve [2], akin
to ordering edges (a,b) by the interleaving of the bits
of a and b, exhibits locality in both a and b rather than
just a as in the vertex ordering. Table 4 compares the
running times of single-threaded PageRank with edges
presented in Hilbert curve order against other implemen-
tations, where we see that it improves over all of them.

Converting the graph data to a Hilbert curve order is an
additional cost in pre-processing the graph. The process
amounts to transforming pairs of node identifiers (edges)
into an integer of twice as many bits, sorting these values,
and then transforming back to pairs of node identifiers.
Our implementation transforms the twitter rv graph in
179 seconds using one thread, which can be a perfor-
mance win even if pre-processing is counted against the
running time.

3.2 Improving algorithms
The problem of properly choosing a good algorithm lies
at the heart of computer science. The label propagation
algorithm is used for graph connectivity not because it
is a good algorithm, but because it fits within the “think
like a vertex” computational model [13], whose imple-
mentations scale well. Unfortunately, in this case (and
many others) the appealing scaling properties are largely
due to the algorithm’s sub-optimality; label propagation
simply does more work than better algorithms.

Consider the algorithmic alternative of Union-Find
with weighted union [3], a simple O(m logn) algorithm
which scans the graph edges once and maintains two in-
tegers for each graph vertex, as presented in Figure 4.
Table 5 reports its performance compared with imple-

3

[“Scalability! At what COST?” McSherry et al. HotOS 2015]

CMU / 清华⼤大学, Summer 2017

Caution: “scale out” is not the entire story
Label Propagation

scalable system cores twitter uk-2007-05
Stratosphere [6] 16 950s -
X-Stream [17] 16 1159s -
Spark [8] 128 1784s � 8000s
Giraph [8] 128 200s � 8000s
GraphLab [8] 128 242s 714s
GraphX [8] 128 251s 800s
Single thread (SSD) 1 153s 417s

Table 3: Reported elapsed times for label propa-
gation, compared with measured times for single-
threaded label propagation from SSD.

are mutually reachable from each other.
In the distributed setting, the most common algorithm

for computing connectivity is label propagation [9] (Fig-
ure 3). In label propagation, each vertex maintains a label
(initially its own ID), and iteratively updates its label to
be the minimum of all its neighbors’ labels and its cur-
rent label. The process propagates the smallest label in
each component to all vertices in the component, and the
iteration converges once this happens in every compo-
nent. The updates are commutative and associative, and
consequently admit a scalable implementation [5].

Table 3 compares the reported running times of la-
bel propagation on several data-parallel systems with a
single-threaded implementation reading from SSD. De-
spite using orders of magnitude less hardware, single-
threaded label propagation is significantly faster than any
system above.

3 Better Baselines
The single-threaded implementations we have presented
were chosen to be the simplest, most direct implementa-
tions we could think of. There are several standard ways
to improve them, yielding single-threaded implementa-
tions which strictly dominate the reported performance
of the systems we have considered, in some cases by an
additional order of magnitude.

3.1 Improving graph layout
Our single-threaded algorithms take as inputs edge itera-
tors, and while they have no requirements on the order in
which edges are presented, the order does affect perfor-
mance. Up to this point, our single-threaded implemen-
tations have enumerated edges in vertex order, whereby
all edges for one vertex are presented before moving
on to the next vertex. Both GraphLab and GraphX in-
stead partition the edges among workers, without requir-
ing that all edges from a single vertex belong to the same

scalable system cores twitter uk-2007-05
GraphLab 128 249s 833s
GraphX 128 419s 462s
Vertex order (SSD) 1 300s 651s
Vertex order (RAM) 1 275s -
Hilbert order (SSD) 1 242s 256s
Hilbert order (RAM) 1 110s -

Table 4: Reported elapsed times for 20 PageRank it-
erations, compared with measured times for single-
threaded implementations from SSD and from RAM.
The single-threaded times use identical algorithms,
but with different edge orders.

worker, which enables those systems to exchange less
data [7, 8].

A single-threaded graph algorithm does not perform
explicit communication, but edge ordering can have a
pronounced effect on the cache behavior. For example,
the edge ordering described by a Hilbert curve [2], akin
to ordering edges (a,b) by the interleaving of the bits
of a and b, exhibits locality in both a and b rather than
just a as in the vertex ordering. Table 4 compares the
running times of single-threaded PageRank with edges
presented in Hilbert curve order against other implemen-
tations, where we see that it improves over all of them.

Converting the graph data to a Hilbert curve order is an
additional cost in pre-processing the graph. The process
amounts to transforming pairs of node identifiers (edges)
into an integer of twice as many bits, sorting these values,
and then transforming back to pairs of node identifiers.
Our implementation transforms the twitter rv graph in
179 seconds using one thread, which can be a perfor-
mance win even if pre-processing is counted against the
running time.

3.2 Improving algorithms
The problem of properly choosing a good algorithm lies
at the heart of computer science. The label propagation
algorithm is used for graph connectivity not because it
is a good algorithm, but because it fits within the “think
like a vertex” computational model [13], whose imple-
mentations scale well. Unfortunately, in this case (and
many others) the appealing scaling properties are largely
due to the algorithm’s sub-optimality; label propagation
simply does more work than better algorithms.

Consider the algorithmic alternative of Union-Find
with weighted union [3], a simple O(m logn) algorithm
which scans the graph edges once and maintains two in-
tegers for each graph vertex, as presented in Figure 4.
Table 5 reports its performance compared with imple-

3

System Graph VxE Time(s) Gflops Procs
Hadoop ?x1.1B 198 0.015 50x8
Spark 40Mx1.5B 97.4 0.03 50x2
Twister 50Mx1.4B 36 0.09 60x4
PowerGraph 40Mx1.4B 3.6 0.8 64x8
BIDMat 60Mx1.4B 6 0.5 1x8
BIDMat+disk 60Mx1.4B 24 0.16 1x8

The“Procs”column lists num nodes x num cores per node.
The first line for BIDMat is performance with the entire
graph in memory (18GB). The second line shows the perfor-
mance including the time to read the graph from disk (about
18 seconds), showing that the RAID achieved a throughput
of about 1 GB/sec. All the other systems except Hadoop
use memory-resident data, and so the number of processors
presumably must scale with the size of the graph. BIDMat
on the other hand can handle much larger graphs that are
disk resident on a single node in reasonable running time.

3.2 LDA and GaP
Latent Dirichlet Allocation [3] is a widely-used topic model.

LDA models documents with a generative process in which
topic distribution for each document is chosen from a Dirich-
let process, topics are chosen independently word-by-work
according to this distribution, and then words are finally
chosen from a multinomial distribution for each topic. GaP
(Gamma Poisson) is a derivative of LDA which instead mod-
els the topic mixture as contiguous bursts of text on each
topic [6]. Both the original LDA and GaP models are op-
timized with alternating updates to topic-word and topic-
document matrices. For LDA it is a variational EM itera-
tion, for GaP it is an alternating likelihood maximization.
Variational LDA was described with a simple recurrence for
the E-step (Figure 6 in [3]). Following the notation of [3],
we develop a matrix version of the update. First we add
subscripts j for the jth document, so �ij is the variational
topic parameter for topic i in document j, and �nij is the
variational parameter for word in position n being generated
by topic i in document j. Then we define:

Fij = exp((�ij)) (2)

The update formula from figure 6 of [3] can now be written:

�ij = ↵i +
MX

w=1

�iwFjiCwj/

kX

i=1

�iwFij (3)

where Cwj is the count of word w in document j. Most such
counts are zero, since C is typically very sparse. The above
sums have been written with w ranging over word values
instead of word positions as per the original paper. This
shows that LDA factorizations can be computed with bag-
of-words representation without explicit word labels in each
position. M is the vocabulary size, and k is the number of
topics. Writing the above in matrix form:

�0 = ↵+ F �
✓
� ⇤ C

�T ⇤C F

◆
(4)

where the quotient of C by �T ⇤C F is the element-wise quo-
tient. Only terms corresponding to nonzeros of C (words
that actually appear in each document) need to be com-
puted, hence the denominator is a SDDMM operation. The
quotient results in a sparse matrix with the same nonzeros as
C, which is then multiplied by �. The dominant operations
in this update are the SDDMM, and the multiplication of �

by the quotient. Both have complexity O(kc) where c is the
number of nonzeros of C. There is also an M-step update of
the topic-word parameters (equation 9 of [3]) which can be
expressed in matrix form and has the same complexity.
The GaP algorithm has a similar E-step. Using the no-

tation from [6], the matrix ⇤ in GaP plays the role of � in
LDA, while X in GaP plays the role of � in LDA. With this
substitution, and assuming rows of � sum to 1, the GaP
E-step can be written:

�0 =

✓
a� 1 + � �

✓
� ⇤ C

�T ⇤C �

◆◆
/

✓
1 +

1
b

◆
(5)

where a and b are k ⇥ 1 vectors which are respectively the
shape and scale parameters of k gamma distributions repre-
senting the priors for each of the k dimensions of �. This for-
mula is again dominated by an SDDMM and a dense-sparse
multiply and its complexity is O(kc). Not all the matrix op-
erations above have matching dimensions, but the rules for
edge operators will produce the correct results. LDA/GaP
are compute-intensive algorithms. Fortunately, GPU imple-
mentations of the dominant steps (SDDMM and SPMM) are
very e�cient, achieving 30-40 gflops/sec on each GPU.
The table below compares the throughput of our vari-

ational LDA implementation with two previously-reported
cluster implementations of LDA. The document sets are dif-
ferent in each case: 300-word docs for Smola et al. [15] and
30-word docs for PowerGraph [8]. Both methods use Gibbs
samplers applied to each word and so document length is
the true document length. We are able to use bag-of-words
which cuts the document length typically by about 3x. The
latent dimension is 1000 in all cases. We tested on a dataset
of 1M wikipedia articles of average length 60. Since we used
the variational method instead of Gibbs sampling, we made
many passes over the dataset. 30 iterations gave good con-
vergence. The per-iteration time was 20 seconds for 1M
documents, or about 10 minutes total. Performance is given
as length-normalized (to length 100) docs/second.

System Docs/hr Gflops Procs
Smola[15] 1.6M 0.5 100x8
PowerGraph 1.1M 0.3 64x16
BIDMach 3.6M 30 1x8x1

The “Procs” field lists machines x cores, or for BIDMach
machines x cores x GPUs. The Gibbs samplers carry a
higher overhead in communication compared to the varia-
tional method, and their gflop counts are lower. We as-
sign a total of 10 flops to each sample to represent random
number generation and updates to the model counts. How-
ever, since these methods need multinomial samples there
are typically many additional comparisons involved. Still the
gflops counts indicate how much productive model-update
work happens in a unit of time. We are currently devel-
oping some blocked, scalable random number generators for
GPUs which we believe will substantially improve the Gibbs
sampler numbers above. In the mean time we see that in
terms of overall performance, the single-node GPU-assisted
(variational) LDA outperforms the two fastest cluster imple-
mentations we are aware of. We hope to improve this result
3-4x by using the additional GPUs in the data engine.

3.3 ALS and SFA
ALS or Alternating Least Squares [10] is a low-dimensional

matrix approximation to a sparse matrix C at the non-zeros

Page Rank

System Graph VxE Time(s) Gflops Procs
Hadoop ?x1.1B 198 0.015 50x8
Spark 40Mx1.5B 97.4 0.03 50x2
Twister 50Mx1.4B 36 0.09 60x4
PowerGraph 40Mx1.4B 3.6 0.8 64x8
BIDMat 60Mx1.4B 6 0.5 1x8
BIDMat+disk 60Mx1.4B 24 0.16 1x8

The“Procs”column lists num nodes x num cores per node.
The first line for BIDMat is performance with the entire
graph in memory (18GB). The second line shows the perfor-
mance including the time to read the graph from disk (about
18 seconds), showing that the RAID achieved a throughput
of about 1 GB/sec. All the other systems except Hadoop
use memory-resident data, and so the number of processors
presumably must scale with the size of the graph. BIDMat
on the other hand can handle much larger graphs that are
disk resident on a single node in reasonable running time.

3.2 LDA and GaP
Latent Dirichlet Allocation [3] is a widely-used topic model.

LDA models documents with a generative process in which
topic distribution for each document is chosen from a Dirich-
let process, topics are chosen independently word-by-work
according to this distribution, and then words are finally
chosen from a multinomial distribution for each topic. GaP
(Gamma Poisson) is a derivative of LDA which instead mod-
els the topic mixture as contiguous bursts of text on each
topic [6]. Both the original LDA and GaP models are op-
timized with alternating updates to topic-word and topic-
document matrices. For LDA it is a variational EM itera-
tion, for GaP it is an alternating likelihood maximization.
Variational LDA was described with a simple recurrence for
the E-step (Figure 6 in [3]). Following the notation of [3],
we develop a matrix version of the update. First we add
subscripts j for the jth document, so �ij is the variational
topic parameter for topic i in document j, and �nij is the
variational parameter for word in position n being generated
by topic i in document j. Then we define:

Fij = exp((�ij)) (2)

The update formula from figure 6 of [3] can now be written:

�ij = ↵i +
MX

w=1

�iwFjiCwj/
kX

i=1

�iwFij (3)

where Cwj is the count of word w in document j. Most such
counts are zero, since C is typically very sparse. The above
sums have been written with w ranging over word values
instead of word positions as per the original paper. This
shows that LDA factorizations can be computed with bag-
of-words representation without explicit word labels in each
position. M is the vocabulary size, and k is the number of
topics. Writing the above in matrix form:

�0 = ↵+ F �
✓
� ⇤ C

�T ⇤C F

◆
(4)

where the quotient of C by �T ⇤C F is the element-wise quo-
tient. Only terms corresponding to nonzeros of C (words
that actually appear in each document) need to be com-
puted, hence the denominator is a SDDMM operation. The
quotient results in a sparse matrix with the same nonzeros as
C, which is then multiplied by �. The dominant operations
in this update are the SDDMM, and the multiplication of �

by the quotient. Both have complexity O(kc) where c is the
number of nonzeros of C. There is also an M-step update of
the topic-word parameters (equation 9 of [3]) which can be
expressed in matrix form and has the same complexity.
The GaP algorithm has a similar E-step. Using the no-

tation from [6], the matrix ⇤ in GaP plays the role of � in
LDA, while X in GaP plays the role of � in LDA. With this
substitution, and assuming rows of � sum to 1, the GaP
E-step can be written:

�0 =

✓
a� 1 + � �

✓
� ⇤ C

�T ⇤C �

◆◆
/

✓
1 +

1
b

◆
(5)

where a and b are k ⇥ 1 vectors which are respectively the
shape and scale parameters of k gamma distributions repre-
senting the priors for each of the k dimensions of �. This for-
mula is again dominated by an SDDMM and a dense-sparse
multiply and its complexity is O(kc). Not all the matrix op-
erations above have matching dimensions, but the rules for
edge operators will produce the correct results. LDA/GaP
are compute-intensive algorithms. Fortunately, GPU imple-
mentations of the dominant steps (SDDMM and SPMM) are
very e�cient, achieving 30-40 gflops/sec on each GPU.
The table below compares the throughput of our vari-

ational LDA implementation with two previously-reported
cluster implementations of LDA. The document sets are dif-
ferent in each case: 300-word docs for Smola et al. [15] and
30-word docs for PowerGraph [8]. Both methods use Gibbs
samplers applied to each word and so document length is
the true document length. We are able to use bag-of-words
which cuts the document length typically by about 3x. The
latent dimension is 1000 in all cases. We tested on a dataset
of 1M wikipedia articles of average length 60. Since we used
the variational method instead of Gibbs sampling, we made
many passes over the dataset. 30 iterations gave good con-
vergence. The per-iteration time was 20 seconds for 1M
documents, or about 10 minutes total. Performance is given
as length-normalized (to length 100) docs/second.

System Docs/hr Gflops Procs
Smola[15] 1.6M 0.5 100x8
PowerGraph 1.1M 0.3 64x16
BIDMach 3.6M 30 1x8x1

The “Procs” field lists machines x cores, or for BIDMach
machines x cores x GPUs. The Gibbs samplers carry a
higher overhead in communication compared to the varia-
tional method, and their gflop counts are lower. We as-
sign a total of 10 flops to each sample to represent random
number generation and updates to the model counts. How-
ever, since these methods need multinomial samples there
are typically many additional comparisons involved. Still the
gflops counts indicate how much productive model-update
work happens in a unit of time. We are currently devel-
oping some blocked, scalable random number generators for
GPUs which we believe will substantially improve the Gibbs
sampler numbers above. In the mean time we see that in
terms of overall performance, the single-node GPU-assisted
(variational) LDA outperforms the two fastest cluster imple-
mentations we are aware of. We hope to improve this result
3-4x by using the additional GPUs in the data engine.

3.3 ALS and SFA
ALS or Alternating Least Squares [10] is a low-dimensional

matrix approximation to a sparse matrix C at the non-zeros

Latency Dirichlet Allocation (LDA)

[Canny and Zhao, KDD 13]

from McSherry 2015:

“The published work on big data systems has fetishized scalability as the most
important feature of a distributed data processing platform. While nearly all
such publications detail their system’s impressive scalability, few directly
evaluate their absolute performance against reasonable benchmarks. To what
degree are these systems truly improving performance, as opposed to
parallelizing overheads that they themselves introduce?”

COST = “Configuration that Outperforms a Single Thread”

Perhaps surprisingly, many published systems have unbounded COST—i.e., no
configuration outperforms the best single-threaded implementation—for all
of the problems to which they have been applied.

BID Data Suite (1 GPU accelerated node)
[McSherry et al. HotOS 2015]

CMU / 清华⼤大学, Summer 2017

Performance improvements to Spark
▪ With increasing DRAM sizes and faster persistent storage (SSD), there is interest in

improving the CPU utilization of Spark applications

- Goal: reduce “COST”

▪ Efforts looking at adding efficient code generation to Spark ecosystem (e.g.,
generate SIMD kernels, target accelerators like GPUs, etc.) to close the gap on
single node performance

- RDD storage layouts must change to enable high-performance SIMD processing
(e.g., struct of arrays instead of array of structs)

- See Spark’s Project Tungsten, Weld [Palkar Cidr ’17], IBM’s SparkGPU

▪ High-performance computing ideas are influencing design of future performance-
oriented distributed systems

- Conversely: the scientific computing community has a lot to learn from the
distributed computing community about elasticity and utility computing

CMU / 清华⼤大学, Summer 2017

Spark summary
▪ Introduces opaque sequence abstraction (RDD) to encapsulate intermediates of

cluster computations (previously… frameworks like Hadoop/MapReduce stored
intermediates in the file system)

- Observation: “files are a poor abstraction for intermediate variables in large-
scale data-parallel programs”

- RDDs are read-only, and created by deterministic data-parallel operators

- Lineage tracked and used for locality-aware scheduling and fault-tolerance
(allows recomputation of partitions of RDD on failure, rather than restore from
checkpoint *)
- Bulk operations allow overhead of lineage tracking (logging) to be low.

▪ Simple, versatile abstraction upon which many domain-specific distributed
computing frameworks are being implemented.

- See Apache Spark project: spark.apache.org

* Note that .persist(RELIABLE) allows programmer to request checkpointing in long lineage situations.

http://spark.apache.org

CMU / 清华⼤大学, Summer 2017

Modern Spark ecosystem

Interleave computation and database query
Can apply transformations to RDDs produced by SQL queries

Machine learning library build on top of Spark abstractions.

GraphLab-like library built on top of Spark abstractions.

Compelling feature: enables integration/composition of multiple domain-specific frameworks
(since all collections implemented under the hood with RDDs and scheduled using Spark scheduler)

